Bathroom renovation website. Helpful Hints

What happens in the earth's atmosphere. Atmosphere and the world of atmospheric phenomena

Earth's atmosphere is the gaseous envelope of our planet. Its lower boundary passes at the level of the earth's crust and hydrosphere, and the upper one passes into the near-Earth region of outer space. The atmosphere contains about 78% nitrogen, 20% oxygen, up to 1% argon, carbon dioxide, hydrogen, helium, neon and some other gases.

This earth shell is characterized by clearly defined layering. The layers of the atmosphere are determined by the vertical distribution of temperature and the different density of gases at its different levels. There are such layers of the Earth's atmosphere: troposphere, stratosphere, mesosphere, thermosphere, exosphere. The ionosphere is distinguished separately.

Up to 80% of the total mass of the atmosphere is the troposphere - the lower surface layer of the atmosphere. The troposphere in the polar zones is located at a level of up to 8-10 km above the earth's surface, in the tropical zone - up to a maximum of 16-18 km. Between the troposphere and the overlying stratosphere is the tropopause - the transition layer. In the troposphere, temperature decreases as altitude increases, and atmospheric pressure decreases with altitude. The average temperature gradient in the troposphere is 0.6°C per 100 m. The temperature at different levels of this shell is determined by the absorption of solar radiation and the efficiency of convection. Almost all human activity takes place in the troposphere. The highest mountains do not go beyond the troposphere, only air transport can cross the upper boundary of this shell to a small height and be in the stratosphere. A large proportion of water vapor is contained in the troposphere, which determines the formation of almost all clouds. Also, almost all aerosols (dust, smoke, etc.) that form on the earth's surface are concentrated in the troposphere. In the boundary lower layer of the troposphere, daily fluctuations in temperature and air humidity are expressed, the wind speed is usually reduced (it increases with altitude). In the troposphere, there is a variable division of the air column into air masses in the horizontal direction, which differ in a number of characteristics depending on the zone and the area of ​​their formation. At atmospheric fronts - the boundaries between air masses - cyclones and anticyclones are formed, which determine the weather in a certain area for a specific period of time.

The stratosphere is the layer of the atmosphere between the troposphere and the mesosphere. The limits of this layer range from 8-16 km to 50-55 km above the Earth's surface. in the stratosphere gas composition air is approximately the same as in the troposphere. Distinctive feature– a decrease in the concentration of water vapor and an increase in the content of ozone. The ozone layer of the atmosphere, which protects the biosphere from the aggressive effects of ultraviolet light, is at a level of 20 to 30 km. In the stratosphere, the temperature rises with height, and the temperature values ​​​​are determined by solar radiation, and not by convection (movements air masses) as in the troposphere. The heating of the air in the stratosphere is due to the absorption of ultraviolet radiation by ozone.

The mesosphere extends above the stratosphere up to a level of 80 km. This layer of the atmosphere is characterized by the fact that the temperature decreases from 0 ° C to - 90 ° C as the height increases. This is the coldest region of the atmosphere.

Above the mesosphere is the thermosphere up to a level of 500 km. From the border with the mesosphere to the exosphere, the temperature varies from approximately 200 K to 2000 K. Up to a level of 500 km, the air density decreases by several hundred thousand times. The relative composition of the atmospheric components of the thermosphere is similar to the surface layer of the troposphere, but with increasing altitude large quantity oxygen goes into the atomic state. A certain proportion of molecules and atoms of the thermosphere is in an ionized state and distributed in several layers, they are united by the concept of the ionosphere. The characteristics of the thermosphere vary over a wide range depending on the geographic latitude, the amount of solar radiation, the time of year and day.

The upper layer of the atmosphere is the exosphere. This is the thinnest layer of the atmosphere. In the exosphere, the mean free paths of particles are so huge that particles can freely escape into interplanetary space. The mass of the exosphere is one ten millionth of the total mass of the atmosphere. The lower boundary of the exosphere is the level of 450-800 km, and the upper boundary is the area where the concentration of particles is the same as in outer space - several thousand kilometers from the Earth's surface. The exosphere is made up of plasma, an ionized gas. Also in the exosphere are the radiation belts of our planet.

Video presentation - layers of the Earth's atmosphere:

Related content:

STRUCTURE OF THE ATMOSPHERE

Atmosphere(from other Greek ἀτμός - steam and σφαῖρα - ball) - a gaseous shell (geosphere) surrounding the planet Earth. Its inner surface covers the hydrosphere and partially the earth's crust, while its outer surface borders on the near-Earth part of outer space.

Physical Properties

The thickness of the atmosphere is about 120 km from the Earth's surface. The total mass of air in the atmosphere is (5.1-5.3) 10 18 kg. Of these, the mass of dry air is (5.1352 ± 0.0003) 10 18 kg, the total mass of water vapor is on average 1.27 10 16 kg.

The molar mass of clean dry air is 28.966 g/mol, the air density at the sea surface is approximately 1.2 kg/m 3 . The pressure at 0 °C at sea level is 101.325 kPa; critical temperature - -140.7 ° C; critical pressure - 3.7 MPa; C p at 0 °C - 1.0048 10 3 J/(kg K), C v - 0.7159 10 3 J/(kg K) (at 0 °C). The solubility of air in water (by mass) at 0 ° C - 0.0036%, at 25 ° C - 0.0023%.

For "normal conditions" at the Earth's surface are taken: density 1.2 kg / m 3, barometric pressure 101.35 kPa, temperature plus 20 ° C and relative humidity 50%. These conditional indicators have a purely engineering value.

The structure of the atmosphere

The atmosphere has a layered structure. The layers of the atmosphere differ from each other in air temperature, its density, the amount of water vapor in the air and other properties.

Troposphere(ancient Greek τρόπος - "turn", "change" and σφαῖρα - "ball") - the lower, most studied layer of the atmosphere, 8-10 km high in the polar regions, up to 10-12 km in temperate latitudes, at the equator - 16-18 km.

When rising in the troposphere, the temperature drops by an average of 0.65 K every 100 m and reaches 180-220 K in the upper part. This upper layer of the troposphere, in which the decrease in temperature with height stops, is called the tropopause. The next layer of the atmosphere above the troposphere is called the stratosphere.

More than 80% of the total mass is concentrated in the troposphere atmospheric air, turbulence and convection are highly developed, the predominant part of water vapor is concentrated, clouds arise, atmospheric fronts form, cyclones and anticyclones develop, as well as other processes that determine weather and climate. The processes occurring in the troposphere are primarily due to convection.

The part of the troposphere within which glaciers can form on the earth's surface is called the chionosphere.

tropopause(from the Greek τροπος - turn, change and παῦσις - stop, cessation) - the layer of the atmosphere in which the decrease in temperature with height stops; transition layer from troposphere to stratosphere. In the earth's atmosphere, the tropopause is located at altitudes from 8-12 km (above sea level) in the polar regions and up to 16-18 km above the equator. The height of the tropopause also depends on the time of year (the tropopause is higher in summer than in winter) and cyclonic activity (it is lower in cyclones and higher in anticyclones)

The thickness of the tropopause ranges from several hundred meters to 2-3 kilometers. In the subtropics, tropopause ruptures are observed due to powerful jet streams. The tropopause over certain areas is often destroyed and re-formed.

Stratosphere(from Latin stratum - flooring, layer) - a layer of the atmosphere, located at an altitude of 11 to 50 km. A slight change in temperature in the 11-25 km layer (the lower layer of the stratosphere) and its increase in the 25-40 km layer from −56.5 to 0.8 °C (upper stratosphere layer or inversion region) are typical. Having reached a value of about 273 K (almost 0 °C) at an altitude of about 40 km, the temperature remains constant up to an altitude of about 55 km. This region of constant temperature is called the stratopause and is the boundary between the stratosphere and the mesosphere. The density of air in the stratosphere is tens and hundreds of times less than at sea level.

It is in the stratosphere that the ozonosphere layer ("ozone layer") is located (at an altitude of 15-20 to 55-60 km), which determines the upper limit of life in the biosphere. Ozone (O 3 ) is formed as a result of photochemical reactions most intensively at an altitude of ~30 km. The total mass of O 3 would be at normal pressure a layer with a thickness of 1.7-4.0 mm, but even this is enough to absorb the ultraviolet radiation of the sun that is harmful to life. The destruction of O 3 occurs when it interacts with free radicals, NO, halogen-containing compounds (including "freons").

Most of the short-wavelength part of ultraviolet radiation (180-200 nm) is retained in the stratosphere and the energy of short waves is transformed. Under the influence of these rays, magnetic fields change, molecules break up, ionization, new formation of gases and other chemical compounds occur. These processes can be observed in the form of northern lights, lightning and other glows.

In the stratosphere and higher layers, under the influence of solar radiation, gas molecules dissociate - into atoms (above 80 km, CO 2 and H 2 dissociate, above 150 km - O 2, above 300 km - N 2). At an altitude of 200-500 km, ionization of gases also occurs in the ionosphere; at an altitude of 320 km, the concentration of charged particles (O + 2, O - 2, N + 2) is ~ 1/300 of the concentration of neutral particles. In the upper layers of the atmosphere there are free radicals - OH, HO 2, etc.

There is almost no water vapor in the stratosphere.

Flights into the stratosphere began in the 1930s. The flight on the first stratospheric balloon (FNRS-1), which Auguste Picard and Paul Kipfer made on May 27, 1931 to a height of 16.2 km, is widely known. Modern combat and supersonic commercial aircraft fly in the stratosphere at altitudes generally up to 20 km (although the dynamic ceiling can be much higher). High-altitude weather balloons rise up to 40 km; the record for an unmanned balloon is 51.8 km.

Recently, in the military circles of the United States, much attention has been paid to the development of layers of the stratosphere above 20 km, often called the "prespace" (Eng. « near space» ). It is assumed that unmanned airships and solar-powered aircraft (like NASA Pathfinder) will be able to stay at an altitude of about 30 km for a long time and provide observation and communication for very large areas, while remaining vulnerable to air defense systems; such devices will be many times cheaper than satellites.

Stratopause- the layer of the atmosphere, which is the boundary between two layers, the stratosphere and the mesosphere. In the stratosphere, temperature rises with altitude, and the stratopause is the layer where the temperature reaches its maximum. The temperature of the stratopause is about 0 °C.

This phenomenon is observed not only on Earth, but also on other planets with an atmosphere.

On Earth, the stratopause is located at an altitude of 50 - 55 km above sea level. Atmospheric pressure is about 1/1000 of the pressure at sea level.

Mesosphere(from the Greek μεσο- - “middle” and σφαῖρα - “ball”, “sphere”) - the layer of the atmosphere at altitudes from 40-50 to 80-90 km. It is characterized by an increase in temperature with height; the maximum (about +50°C) temperature is located at an altitude of about 60 km, after which the temperature begins to decrease to −70° or −80°C. Such a decrease in temperature is associated with the energetic absorption of solar radiation (radiation) by ozone. The term was adopted by the Geographical and Geophysical Union in 1951.

The gas composition of the mesosphere, as well as those of the lower atmospheric layers, is constant and contains about 80% nitrogen and 20% oxygen.

The mesosphere is separated from the underlying stratosphere by the stratopause, and from the overlying thermosphere by the mesopause. The mesopause basically coincides with the turbopause.

Meteors begin to glow and, as a rule, burn up completely in the mesosphere.

Noctilucent clouds may appear in the mesosphere.

For flights, the mesosphere is a kind of "dead zone" - the air here is too rarefied to support airplanes or balloons (at an altitude of 50 km, the air density is 1000 times less than at sea level), and at the same time too dense for artificial flights. satellites in such a low orbit. Direct studies of the mesosphere are carried out mainly with the help of suborbital meteorological rockets; in general, the mesosphere has been studied worse than other layers of the atmosphere, in connection with which scientists called it the “ignorosphere”.

mesopause

mesopause The layer of the atmosphere that separates the mesosphere and thermosphere. On Earth, it is located at an altitude of 80-90 km above sea level. In the mesopause, there is a temperature minimum, which is about -100 ° C. Below (starting from a height of about 50 km) the temperature drops with height, above (up to a height of about 400 km) it rises again. The mesopause coincides with the lower boundary of the region of active absorption of the X-ray and the shortest wavelength ultraviolet radiation of the Sun. Silvery clouds are observed at this altitude.

The mesopause exists not only on Earth, but also on other planets with an atmosphere.

Karman Line- height above sea level, which is conventionally accepted as the boundary between the Earth's atmosphere and space.

As defined by the Fédération Aéronautique Internationale (FAI), the Karman Line is at an altitude of 100 km above sea level.

The height was named after Theodor von Karman, an American scientist of Hungarian origin. He was the first to determine that at about this altitude the atmosphere becomes so rarefied that aeronautics becomes impossible, since the speed of the aircraft, necessary to create sufficient lift, becomes greater than the first cosmic speed, and therefore, to achieve higher altitudes, it is necessary to use the means of astronautics.

The Earth's atmosphere continues beyond the Karman line. The outer part of the earth's atmosphere, the exosphere, extends to an altitude of 10,000 km or more, at such an altitude the atmosphere consists mainly of hydrogen atoms that can leave the atmosphere.

Reaching the Karman Line was the first condition for the Ansari X Prize, as this is the basis for recognizing the flight as a space flight.

Everyone who has flown on an airplane is used to this kind of message: “our flight is at an altitude of 10,000 m, the temperature overboard is 50 ° C.” It seems nothing special. The farther from the surface of the Earth heated by the Sun, the colder. Many people think that the decrease in temperature with height goes on continuously and gradually the temperature drops, approaching the temperature of space. By the way, scientists thought so until the end of the 19th century.

Let's take a closer look at the distribution of air temperature over the Earth. The atmosphere is divided into several layers, which primarily reflect the nature of temperature changes.

The lower layer of the atmosphere is called troposphere, which means "sphere of rotation". All changes in weather and climate are the result of physical processes occurring precisely in this layer. The upper boundary of this layer is located where the decrease in temperature with height is replaced by its increase - approximately at an altitude of 15-16 km above the equator and 7-8 km above the poles. Like the Earth itself, the atmosphere under the influence of the rotation of our planet is also somewhat flattened over the poles and swells over the equator. However, this effect is much stronger in the atmosphere than in the solid shell of the Earth. In the direction from the Earth's surface to the upper boundary of the troposphere, the air temperature drops.Above the equator minimum temperature air is about -62 ° C, and over the poles about -45 ° C. In temperate latitudes, more than 75% of the mass of the atmosphere is in the troposphere. In the tropics, about 90% of the mass of the atmosphere is within the troposphere.

In 1899 in vertical profile temperature at a certain height, its minimum was found, and then the temperature increased slightly. The beginning of this increase means the transition to the next layer of the atmosphere - to stratosphere, which means "layer sphere". The term stratosphere means and reflects the former idea of ​​​​the uniqueness of the layer lying above the troposphere. The stratosphere extends to a height of about 50 km above the earth's surface. Its feature is, in particular, a sharp increase in air temperature. This increase in temperature is explained ozone formation reaction - one of the main chemical reactions occurring in the atmosphere.

The bulk of the ozone is concentrated at altitudes of about 25 km, but in general the ozone layer is a shell strongly stretched along the height, covering almost the entire stratosphere. The interaction of oxygen with ultraviolet rays is one of the favorable processes in the earth's atmosphere that contribute to the maintenance of life on earth. The absorption of this energy by ozone prevents its excessive flow to the earth's surface, where exactly such a level of energy is created that is suitable for the existence of terrestrial life forms. The ozonosphere absorbs some of the radiant energy passing through the atmosphere. As a result, a vertical air temperature gradient of approximately 0.62 ° C per 100 m is established in the ozonosphere, i.e., the temperature rises with height up to the upper limit of the stratosphere - the stratopause (50 km), reaching, according to some data, 0 ° C.

At altitudes from 50 to 80 km there is a layer of the atmosphere called mesosphere. The word "mesosphere" means "intermediate sphere", here the air temperature continues to decrease with height. Above the mesosphere, in a layer called thermosphere, the temperature rises again with altitude up to about 1000°C, and then drops very quickly to -96°C. However, it does not fall indefinitely, then the temperature rises again.

Thermosphere is the first layer ionosphere. Unlike the previously mentioned layers, the ionosphere is not distinguished by temperature. The ionosphere is a region of an electrical nature that makes many types of radio communications possible. The ionosphere is divided into several layers, designating them with the letters D, E, F1 and F2. These layers also have special names. The division into layers is caused by several reasons, among which the most important is the unequal influence of the layers on the passage of radio waves. The lowest layer, D, mainly absorbs radio waves and thus prevents their further propagation. The best studied layer E is located at an altitude of about 100 km above the earth's surface. It is also called the Kennelly-Heaviside layer after the names of the American and English scientists who simultaneously and independently discovered it. Layer E, like a giant mirror, reflects radio waves. Thanks to this layer, long radio waves travel farther distances than would be expected if they propagated only in a straight line, without being reflected from the E layer. The F layer also has similar properties. It is also called the Appleton layer. Together with the Kennelly-Heaviside layer, it reflects radio waves to terrestrial radio stations. Such reflection can occur at various angles. The Appleton layer is located at an altitude of about 240 km.

The outermost region of the atmosphere, the second layer of the ionosphere, is often called exosphere. This term indicates the existence of the outskirts of space near the Earth. It is difficult to determine exactly where the atmosphere ends and space begins, since the density of atmospheric gases gradually decreases with height and the atmosphere itself gradually turns into an almost vacuum, in which only individual molecules meet. Already at an altitude of about 320 km, the density of the atmosphere is so low that molecules can travel more than 1 km without colliding with each other. The outermost part of the atmosphere serves as its upper boundary, which is located at altitudes from 480 to 960 km.

More information about the processes in the atmosphere can be found on the website "Earth climate"

The Earth's atmosphere is the gaseous envelope of our planet. By the way, almost all celestial bodies have similar shells, starting from planets solar system and ending large asteroids. depends on many factors - the size of its speed, mass and many other parameters. But only the shell of our planet contains the components that allow us to live.

Earth's Atmosphere: A Brief History of Origin

It is believed that at the beginning of its existence, our planet did not have a gas shell at all. But the young, newly formed celestial body was constantly evolving. The Earth's primary atmosphere was formed as a result of constant volcanic eruptions. This is how, over many thousands of years, a shell of water vapor, nitrogen, carbon and other elements (except oxygen) formed around the Earth.

Since the amount of moisture in the atmosphere is limited, its excess turned into precipitation - this is how the seas, oceans and other bodies of water were formed. The first organisms that populated the planet appeared and developed in the aquatic environment. Most of them belonged to plant organisms that produce oxygen through photosynthesis. Thus, the Earth's atmosphere began to fill with this vital gas. And as a result of the accumulation of oxygen, the ozone layer was formed, which protected the planet from the harmful effects of ultraviolet radiation. It is these factors that created all the conditions for our existence.

The structure of the Earth's atmosphere

As you know, the gaseous envelope of our planet consists of several layers - these are the troposphere, stratosphere, mesosphere, thermosphere. It is impossible to draw clear boundaries between these layers - it all depends on the time of year and the latitude of the planet.

The troposphere is the lower part of the gaseous envelope, the height of which is on average 10 to 15 kilometers. It is here that the focus most of By the way, this is where all the moisture is located and clouds form. Due to the oxygen content, the troposphere supports the vital activity of all organisms. In addition, it is of decisive importance in the formation of weather and climatic features of the area - not only clouds are formed here, but also winds. The temperature drops with altitude.

Stratosphere - starts from the troposphere and ends at an altitude of 50 to 55 kilometers. Here the temperature rises with height. This part of the atmosphere contains practically no water vapor, but it does have an ozone layer. Sometimes you can see the formation of "mother-of-pearl" clouds here, which can only be seen at night - it is believed that they are represented by highly condensed water droplets.

Mesosphere - stretches up to 80 kilometers up. In this layer, you can notice a sharp drop in temperature as you move up. Turbulence is also highly developed here. By the way, so-called “silver clouds” are formed in the mesosphere, which consist of small ice crystals - you can see them only at night. Interestingly, there is practically no air at the upper boundary of the mesosphere - it is 200 times less than near the earth's surface.

The thermosphere is the upper layer of the earth's gaseous envelope, in which it is customary to distinguish between the ionosphere and the exosphere. Interestingly, with altitude, the temperature here rises very sharply - at an altitude of 800 kilometers from the earth's surface, it is more than 1000 degrees Celsius. The ionosphere is characterized by highly liquefied air and a huge content of active ions. As for the exosphere, this part of the atmosphere smoothly passes into interplanetary space. It is worth noting that the thermosphere does not contain air.

It can be seen that the Earth's atmosphere is a very important part of our planet, which remains a decisive factor in the emergence of life. It provides vital activity, supports the existence of the hydrosphere (the planet's water shell) and protects against ultraviolet radiation.

The atmosphere began to form along with the formation of the Earth. In the course of the evolution of the planet and as its parameters approached modern values, there were fundamentally qualitative changes in its chemical composition and physical properties. According to the evolutionary model, at an early stage, the Earth was in a molten state and formed as a solid body about 4.5 billion years ago. This milestone is taken as the beginning of the geological chronology. Since that time, the slow evolution of the atmosphere began. Some geological processes (for example, outpourings of lava during volcanic eruptions) were accompanied by the release of gases from the bowels of the Earth. They included nitrogen, ammonia, methane, water vapor, CO2 oxide and CO2 carbon dioxide. Under the influence of solar ultraviolet radiation, water vapor decomposed into hydrogen and oxygen, but the released oxygen reacted with carbon monoxide, forming carbon dioxide. Ammonia decomposed into nitrogen and hydrogen. Hydrogen, in the process of diffusion, rose up and left the atmosphere, while heavier nitrogen could not escape and gradually accumulated, becoming the main component, although some of it was bound into molecules as a result of chemical reactions ( cm. CHEMISTRY OF THE ATMOSPHERE). Under the influence of ultraviolet rays and electrical discharges, a mixture of gases that were present in the original atmosphere of the Earth entered into chemical reactions, as a result of which organic substances, in particular amino acids, were formed. With the advent of primitive plants, the process of photosynthesis began, accompanied by the release of oxygen. This gas, especially after diffusion into the upper atmosphere, began to protect its lower layers and the Earth's surface from life-threatening ultraviolet and X-ray radiation. According to theoretical estimates, the oxygen content, which is 25,000 times less than now, could already lead to the formation of an ozone layer with only half as much as it is now. However, this is already enough to provide a very significant protection of organisms from the damaging effects of ultraviolet rays.

It is likely that the primary atmosphere contained a lot of carbon dioxide. It was consumed during photosynthesis, and its concentration must have decreased as the plant world evolved, and also due to absorption during some geological processes. Insofar as the greenhouse effect associated with the presence of carbon dioxide in the atmosphere, fluctuations in its concentration are one of the important causes of such large-scale climate changes in the history of the Earth, such as ice ages.

Helium present in the modern atmosphere for the most part is a product of the radioactive decay of uranium, thorium and radium. These radioactive elements emit a-particles, which are the nuclei of helium atoms. Since an electric charge is not formed and does not disappear during radioactive decay, with the formation of each a-particle, two electrons appear, which, recombining with a-particles, form neutral helium atoms. Radioactive elements are contained in minerals scattered in the thickness rocks, therefore, a significant part of the helium formed as a result of radioactive decay is stored in them, escaping very slowly into the atmosphere. A certain amount of helium rises up into the exosphere due to diffusion, but due to the constant influx from the earth's surface, the volume of this gas in the atmosphere remains almost unchanged. Based on the spectral analysis of starlight and the study of meteorites, it is possible to estimate the relative abundance of various chemical elements in the Universe. The concentration of neon in space is about ten billion times higher than on Earth, krypton - ten million times, and xenon - a million times. It follows from this that the concentration of these inert gases, apparently originally present in the Earth's atmosphere and not replenished in the course of chemical reactions, greatly decreased, probably even at the stage of the Earth's loss of its primary atmosphere. An exception is the inert gas argon, since it is still formed in the form of the 40 Ar isotope in the process of radioactive decay of the potassium isotope.

Barometric pressure distribution.

The total weight of atmospheric gases is approximately 4.5 10 15 tons. Thus, the "weight" of the atmosphere per unit area, or atmospheric pressure, is approximately 11 t / m 2 = 1.1 kg / cm 2 at sea level. Pressure equal to P 0 \u003d 1033.23 g / cm 2 \u003d 1013.250 mbar \u003d 760 mm Hg. Art. = 1 atm, taken as the standard mean atmospheric pressure. For an atmosphere in hydrostatic equilibrium, we have: d P= -rgd h, which means that on the interval of heights from h before h+d h occurs equality between atmospheric pressure change d P and the weight of the corresponding element of the atmosphere with unit area, density r and thickness d h. As a ratio between pressure R and temperature T the equation of state of an ideal gas with density r, which is quite applicable for the earth's atmosphere, is used: P= r R T/m, where m is the molecular weight, and R = 8.3 J/(K mol) is the universal gas constant. Then dlog P= – (m g/RT)d h= -bd h= – d h/H, where the pressure gradient is on a logarithmic scale. The reciprocal of H is to be called the scale of the height of the atmosphere.

When integrating this equation for an isothermal atmosphere ( T= const) or for its part, where such an approximation is acceptable, the barometric law of pressure distribution with height is obtained: P = P 0 exp(- h/H 0), where the height reading h produced from ocean level, where the standard mean pressure is P 0 . Expression H 0=R T/ mg, is called the height scale, which characterizes the extent of the atmosphere, provided that the temperature in it is the same everywhere (isothermal atmosphere). If the atmosphere is not isothermal, then it is necessary to integrate taking into account the change in temperature with height, and the parameter H- some local characteristic of the layers of the atmosphere, depending on their temperature and the properties of the medium.

Standard atmosphere.

Model (table of values ​​of the main parameters) corresponding to the standard pressure at the base of the atmosphere R 0 and chemical composition is called the standard atmosphere. More precisely, this is a conditional model of the atmosphere, for which the average values ​​of temperature, pressure, density, viscosity, and other air characteristics for a latitude of 45° 32° 33І are set at altitudes from 2 km below sea level to the outer boundary of the earth's atmosphere. The parameters of the middle atmosphere at all altitudes were calculated using the ideal gas equation of state and the barometric law assuming that at sea level the pressure is 1013.25 hPa (760 mmHg) and the temperature is 288.15 K (15.0°C). According to the nature of the vertical temperature distribution, the average atmosphere consists of several layers, in each of which the temperature is approximated by a linear function of height. In the lowest of the layers - the troposphere (h Ј 11 km), the temperature drops by 6.5 ° C with each kilometer of ascent. At high altitudes, the value and sign of the vertical temperature gradient change from layer to layer. Above 790 km, the temperature is about 1000 K and practically does not change with height.

The standard atmosphere is a periodically updated, legalized standard, issued in the form of tables.

Table 1. Standard Earth Atmosphere Model
Table 1. STANDARD EARTH ATMOSPHERE MODEL. The table shows: h- height from sea level, R- pressure, T– temperature, r – density, N is the number of molecules or atoms per unit volume, H- height scale, l is the length of the free path. Pressure and temperature at an altitude of 80–250 km, obtained from rocket data, have lower values. Extrapolated values ​​for heights greater than 250 km are not very accurate.
h(km) P(mbar) T(°C) r (g / cm 3) N(cm -3) H(km) l(cm)
0 1013 288 1.22 10 -3 2.55 10 19 8,4 7.4 10 -6
1 899 281 1.11 10 -3 2.31 10 19 8.1 10 -6
2 795 275 1.01 10 -3 2.10 10 19 8.9 10 -6
3 701 268 9.1 10 -4 1.89 10 19 9.9 10 -6
4 616 262 8.2 10 -4 1.70 10 19 1.1 10 -5
5 540 255 7.4 10 -4 1.53 10 19 7,7 1.2 10 -5
6 472 249 6.6 10 -4 1.37 10 19 1.4 10 -5
8 356 236 5.2 10 -4 1.09 10 19 1.7 10 -5
10 264 223 4.1 10 -4 8.6 10 18 6,6 2.2 10 -5
15 121 214 1.93 10 -4 4.0 10 18 4.6 10 -5
20 56 214 8.9 10 -5 1.85 10 18 6,3 1.0 10 -4
30 12 225 1.9 10 -5 3.9 10 17 6,7 4.8 10 -4
40 2,9 268 3.9 10 -6 7.6 10 16 7,9 2.4 10 -3
50 0,97 276 1.15 10 -6 2.4 10 16 8,1 8.5 10 -3
60 0,28 260 3.9 10 -7 7.7 10 15 7,6 0,025
70 0,08 219 1.1 10 -7 2.5 10 15 6,5 0,09
80 0,014 205 2.7 10 -8 5.0 10 14 6,1 0,41
90 2.8 10 -3 210 5.0 10 -9 9 10 13 6,5 2,1
100 5.8 10 -4 230 8.8 10 -10 1.8 10 13 7,4 9
110 1.7 10 -4 260 2.1 10 –10 5.4 10 12 8,5 40
120 6 10 -5 300 5.6 10 -11 1.8 10 12 10,0 130
150 5 10 -6 450 3.2 10 -12 9 10 10 15 1.8 10 3
200 5 10 -7 700 1.6 10 -13 5 10 9 25 3 10 4
250 9 10 -8 800 3 10 -14 8 10 8 40 3 10 5
300 4 10 -8 900 8 10 -15 3 10 8 50
400 8 10 -9 1000 1 10 –15 5 10 7 60
500 2 10 -9 1000 2 10 -16 1 10 7 70
700 2 10 –10 1000 2 10 -17 1 10 6 80
1000 1 10 –11 1000 1 10 -18 1 10 5 80

Troposphere.

The lowest and densest layer of the atmosphere, in which the temperature decreases rapidly with height, is called the troposphere. It contains up to 80% of the total mass of the atmosphere and extends in polar and middle latitudes up to heights of 8–10 km, and in the tropics up to 16–18 km. Almost all weather-forming processes develop here, heat and moisture exchange occurs between the Earth and its atmosphere, clouds form, various meteorological phenomena occur, fogs and precipitation occur. These layers of the earth's atmosphere are in convective equilibrium and, due to active mixing, have a uniform chemical composition, mainly from molecular nitrogen (78%) and oxygen (21%). The vast majority of natural and man-made aerosol and gas air pollutants are concentrated in the troposphere. The dynamics of the lower part of the troposphere up to 2 km thick strongly depends on the properties of the underlying surface of the Earth, which determines the horizontal and vertical movements of air (winds) due to the transfer of heat from a warmer land through the IR radiation of the earth's surface, which is absorbed in the troposphere, mainly by vapor water and carbon dioxide (greenhouse effect). The temperature distribution with height is established as a result of turbulent and convective mixing. On average, it corresponds to a drop in temperature with height of about 6.5 K/km.

The wind speed in the surface boundary layer first increases rapidly with height, and higher it continues to increase by 2–3 km/s per kilometer. Sometimes in the troposphere there are narrow planetary streams (with a speed of more than 30 km/s), western ones in middle latitudes, and eastern ones near the equator. They are called jet streams.

tropopause.

At the upper boundary of the troposphere (tropopause), the temperature reaches its minimum value for the lower atmosphere. This is the transition layer between the troposphere and the stratosphere above it. The thickness of the tropopause is from hundreds of meters to 1.5–2 km, and the temperature and altitude, respectively, range from 190 to 220 K and from 8 to 18 km, depending on the geographic latitude and season. In temperate and high latitudes, in winter it is 1–2 km lower than in summer and 8–15 K warmer. In the tropics, seasonal changes are much less (altitude 16–18 km, temperature 180–200 K). Above jet streams possible rupture of the tropopause.

Water in the Earth's atmosphere.

The most important feature of the Earth's atmosphere is the presence of a significant amount of water vapor and water in droplet form, which is most easily observed in the form of clouds and cloud structures. The degree of cloud coverage of the sky (at a certain moment or on average over a certain period of time), expressed on a 10-point scale or as a percentage, is called cloudiness. The shape of the clouds is determined by international classification. On average, clouds cover about half of the globe. Cloudiness is an important factor characterizing weather and climate. In winter and at night, cloudiness prevents a decrease in the temperature of the earth's surface and the surface layer of air, in summer and during the day it weakens the heating of the earth's surface by the sun's rays, softening the climate inside the continents.

Clouds.

Clouds are accumulations of water droplets suspended in the atmosphere (water clouds), ice crystals (ice clouds), or both (mixed clouds). As drops and crystals become larger, they fall out of the clouds in the form of precipitation. Clouds form mainly in the troposphere. They result from the condensation of water vapor contained in the air. The diameter of cloud drops is on the order of several microns. The content of liquid water in clouds is from fractions to several grams per m3. Clouds are distinguished by height: According to the international classification, there are 10 genera of clouds: cirrus, cirrocumulus, cirrostratus, altocumulus, altostratus, stratonimbus, stratus, stratocumulus, cumulonimbus, cumulus.

Mother-of-pearl clouds are also observed in the stratosphere, and noctilucent clouds in the mesosphere.

Cirrus clouds - transparent clouds in the form of thin white threads or veils with a silky sheen, not giving a shadow. Cirrus clouds are made up of ice crystals and form in the upper troposphere at very low temperatures. Some types of cirrus clouds serve as harbingers of weather changes.

Cirrocumulus clouds are ridges or layers of thin white clouds in the upper troposphere. Cirrocumulus clouds are built from small elements that look like flakes, ripples, small balls without shadows and consist mainly of ice crystals.

Cirrostratus clouds - a whitish translucent veil in the upper troposphere, usually fibrous, sometimes blurry, consisting of small needle or columnar ice crystals.

Altocumulus clouds are white, gray or white-gray clouds of the lower and middle layers of the troposphere. Altocumulus clouds have the form of layers and ridges, as if built from plates lying one above the other, rounded masses, shafts, flakes. Altocumulus clouds form during intense convective activity and usually consist of supercooled water droplets.

Altostratus clouds are grayish or bluish clouds of a fibrous or uniform structure. Altostratus clouds are observed in the middle troposphere, extending several kilometers in height and sometimes thousands of kilometers in a horizontal direction. Usually, altostratus clouds are part of frontal cloud systems associated with ascending movements of air masses.

Nimbostratus clouds - a low (from 2 km and above) amorphous layer of clouds of a uniform gray color, giving rise to overcast rain or snow. Nimbostratus clouds - highly developed vertically (up to several km) and horizontally (several thousand km), consist of supercooled water drops mixed with snowflakes, usually associated with atmospheric fronts.

Stratus clouds - clouds of the lower tier in the form of a homogeneous layer without definite outlines, gray in color. The height of stratus clouds above the earth's surface is 0.5–2 km. Occasional drizzle falls from stratus clouds.

Cumulus clouds are dense, bright white clouds during the day with significant vertical development (up to 5 km or more). The upper parts of cumulus clouds look like domes or towers with rounded outlines. Cumulus clouds usually form as convection clouds in cold air masses.

Stratocumulus clouds - low (below 2 km) clouds in the form of gray or white non-fibrous layers or ridges of round large blocks. The vertical thickness of stratocumulus clouds is small. Occasionally, stratocumulus clouds give light precipitation.

Cumulonimbus clouds are powerful and dense clouds with strong vertical development (up to a height of 14 km), giving heavy rainfall with thunderstorms, hail, squalls. Cumulonimbus clouds develop from powerful cumulus clouds, differing from them top made up of ice crystals.



Stratosphere.

Through the tropopause, on average at altitudes from 12 to 50 km, the troposphere passes into the stratosphere. In the lower part, for about 10 km, i.e. up to heights of about 20 km, it is isothermal (temperature about 220 K). Then it increases with altitude, reaching a maximum of about 270 K at an altitude of 50–55 km. Here is the boundary between the stratosphere and the overlying mesosphere, called the stratopause. .

There is much less water vapor in the stratosphere. Nevertheless, thin translucent mother-of-pearl clouds are occasionally observed, occasionally appearing in the stratosphere at a height of 20–30 km. Mother-of-pearl clouds are visible in the dark sky after sunset and before sunrise. In shape, mother-of-pearl clouds resemble cirrus and cirrocumulus clouds.

Middle atmosphere (mesosphere).

At an altitude of about 50 km, the mesosphere begins with the peak of a wide temperature maximum. . The reason for the increase in temperature in the region of this maximum is an exothermic (i.e., accompanied by the release of heat) photochemical reaction of ozone decomposition: O 3 + hv® O 2 + O. Ozone arises as a result of the photochemical decomposition of molecular oxygen O 2

About 2+ hv® O + O and the subsequent reaction of a triple collision of an atom and an oxygen molecule with some third molecule M.

O + O 2 + M ® O 3 + M

Ozone greedily absorbs ultraviolet radiation in the region from 2000 to 3000Å, and this radiation heats up the atmosphere. Ozone, located in the upper atmosphere, serves as a kind of shield that protects us from the action of ultraviolet radiation from the sun. Without this shield, the development of life on Earth in its modern forms would hardly have been possible.

In general, throughout the mesosphere, the temperature of the atmosphere decreases to its minimum value of about 180 K at the upper boundary of the mesosphere (called the mesopause, height is about 80 km). In the vicinity of the mesopause, at altitudes of 70–90 km, very thin layer ice crystals and particles of volcanic and meteoritic dust, observed as a beautiful spectacle of noctilucent clouds shortly after sunset.

In the mesosphere, for the most part, small solid meteorite particles that fall on the Earth are burned, causing the phenomenon of meteors.

Meteors, meteorites and fireballs.

Flares and other phenomena in the upper atmosphere of the Earth caused by the intrusion into it at a speed of 11 km / s and above solid cosmic particles or bodies are called meteoroids. There is an observed bright meteor trail; the most powerful phenomena, often accompanied by the fall of meteorites, are called fireballs; meteors are associated with meteor showers.

meteor shower:

1) the phenomenon of multiple meteor falls over several hours or days from one radiant.

2) a swarm of meteoroids moving in one orbit around the Sun.

The systematic appearance of meteors in a certain region of the sky and in certain days year, caused by the intersection of the Earth's orbit with a common orbit of many meteorite bodies moving with approximately the same and equally directed velocities, due to which their paths in the sky seem to come out of one common point (radiant). They are named after the constellation where the radiant is located.

Meteor showers make a deep impression with their lighting effects, but individual meteors are rarely seen. Far more numerous are invisible meteors, too small to be seen at the moment they are swallowed up by the atmosphere. Some of the smallest meteors probably do not heat up at all, but are only captured by the atmosphere. These small particles ranging in size from a few millimeters to ten-thousandths of a millimeter are called micrometeorites. The amount of meteoric matter entering the atmosphere every day is from 100 to 10,000 tons, with most of this matter being micrometeorites.

Since meteoric matter partially burns up in the atmosphere, its gas composition is replenished with traces of various chemical elements. For example, stone meteors bring lithium into the atmosphere. The combustion of metallic meteors leads to the formation of tiny spherical iron, iron-nickel and other droplets that pass through the atmosphere and are deposited on the earth's surface. They can be found in Greenland and Antarctica, where ice sheets remain almost unchanged for years. Oceanologists find them in bottom ocean sediments.

Most of the meteor particles entering the atmosphere are deposited within approximately 30 days. Some scholars believe that this cosmic dust plays an important role in the formation of atmospheric phenomena such as rain, as it serves as the nuclei of water vapor condensation. Therefore, it is assumed that precipitation is statistically associated with large meteor showers. However, some experts believe that since the total input of meteoric matter is many tens of times greater than even with the largest meteor shower, the change in the total amount of this material that occurs as a result of one such shower can be neglected.

However, there is no doubt that the largest micrometeorites and visible meteorites leave long traces of ionization in the high layers of the atmosphere, mainly in the ionosphere. Such traces can be used for long-distance radio communications, as they reflect high-frequency radio waves.

The energy of meteors entering the atmosphere is spent mainly, and perhaps completely, on its heating. This is one of the minor components of the heat balance of the atmosphere.

A meteorite is a solid body of natural origin that fell to the surface of the Earth from space. Usually distinguish stone, iron-stone and iron meteorites. The latter are mainly composed of iron and nickel. Among the found meteorites, most have a weight of several grams to several kilograms. The largest of those found, the Goba iron meteorite weighs about 60 tons and still lies in the same place where it was discovered, in South Africa. Most meteorites are fragments of asteroids, but some meteorites may have come to Earth from the Moon and even from Mars.

A fireball is a very bright meteor, sometimes observed even during the day, often leaving behind a smoky trail and accompanied by sound phenomena; often ends with the fall of meteorites.



Thermosphere.

Above the temperature minimum of the mesopause, the thermosphere begins, in which the temperature, at first slowly, and then quickly, begins to rise again. The reason is the absorption of ultraviolet, solar radiation at altitudes of 150–300 km, due to the ionization of atomic oxygen: O + hv® O + + e.

In the thermosphere, the temperature continuously rises to a height of about 400 km, where it reaches 1800 K in the daytime during the epoch of maximum solar activity. In the epoch of minimum, this limiting temperature can be less than 1000 K. Above 400 km, the atmosphere passes into an isothermal exosphere. The critical level (the base of the exosphere) is located at an altitude of about 500 km.

Auroras and many orbits of artificial satellites, as well as noctilucent clouds - all these phenomena occur in the mesosphere and thermosphere.

Polar Lights.

At high latitudes, auroras are observed during magnetic field disturbances. They may last for several minutes, but are often visible for several hours. Auroras vary greatly in shape, color and intensity, all of which sometimes change very rapidly over time. The aurora spectrum consists of emission lines and bands. Some of the emissions from the night sky are enhanced in the aurora spectrum, primarily the green and red lines of l 5577 Å and l 6300 Å of oxygen. It happens that one of these lines is many times more intense than the other, and this determines the visible color of the radiance: green or red. Disturbances in the magnetic field are also accompanied by disruptions in radio communications in the polar regions. The disruption is caused by changes in the ionosphere, which means that during magnetic storms a powerful source of ionization operates. It has been established that strong magnetic storms occur when large groups of spots are present near the center of the solar disk. Observations have shown that storms are associated not with the spots themselves, but with solar flares that appear during the development of a group of spots.

The auroras are a range of light of varying intensity with rapid movements observed in the high latitude regions of the Earth. The visual aurora contains green (5577Å) and red (6300/6364Å) emission lines of atomic oxygen and N 2 molecular bands, which are excited by energetic particles of solar and magnetospheric origin. These emissions are usually displayed at an altitude of about 100 km and above. The term optical aurora is used to refer to the visual auroras and their infrared to ultraviolet emission spectrum. The radiation energy in the infrared part of the spectrum significantly exceeds the energy of the visible region. When auroras appeared, emissions were observed in the ULF range (

The actual forms of auroras are difficult to classify; The following terms are most commonly used:

1. Calm uniform arcs or stripes. The arc usually extends for ~1000 km in the direction of the geomagnetic parallel (toward the Sun in the polar regions) and has a width from one to several tens of kilometers. A strip is a generalization of the concept of an arc, it usually does not have a regular arcuate shape, but bends in the form of an S or in the form of spirals. Arcs and bands are located at altitudes of 100–150 km.

2. Rays of aurora . This term refers to an auroral structure stretched along magnetic field lines with a vertical extension from several tens to several hundreds of kilometers. The length of the rays along the horizontal is small, from several tens of meters to several kilometers. Rays are usually observed in arcs or as separate structures.

3. Stains or surfaces . These are isolated areas of glow that do not have a specific shape. Individual spots may be related.

4. Veil. An unusual form of aurora, which is a uniform glow that covers large areas of the sky.

According to the structure, the auroras are divided into homogeneous, polish and radiant. Various terms are used; pulsating arc, pulsating surface, diffuse surface, radiant stripe, drapery, etc. There is a classification of auroras according to their color. According to this classification, auroras of the type BUT. The upper part or completely are red (6300–6364 Å). They usually appear at altitudes of 300–400 km during high geomagnetic activity.

Aurora type IN are colored red in the lower part and are associated with the luminescence of the bands of the first positive N 2 system and the first negative O 2 system. Such forms of aurora appear during the most active phases of auroras.

Zones auroras these are zones of maximum frequency of occurrence of auroras at night, according to observers at a fixed point on the Earth's surface. The zones are located at 67° north and south latitude, and their width is about 6°. The maximum occurrence of auroras corresponding to present moment geomagnetic local time, occurs in oval-like belts (aurora oval), which are located asymmetrically around the north and south geomagnetic poles. The aurora oval is fixed in latitude-time coordinates, and the aurora zone is the locus of points in the midnight region of the oval in latitude-longitude coordinates. The oval belt is located approximately 23° from the geomagnetic pole in the night sector and 15° in the day sector.

Auroral oval and aurora zones. The location of the aurora oval depends on geomagnetic activity. The oval becomes wider at high geomagnetic activity. Aurora zones or aurora oval boundaries are better represented by L 6.4 than by dipole coordinates. The geomagnetic field lines at the boundary of the daytime sector of the aurora oval coincide with magnetopause. There is a change in the position of the aurora oval depending on the angle between the geomagnetic axis and the Earth-Sun direction. The auroral oval is also determined on the basis of data on the precipitation of particles (electrons and protons) of certain energies. Its position can be independently determined from data on caspakh on the dayside and in the magnetotail.

The daily variation in the frequency of occurrence of auroras in the aurora zone has a maximum at geomagnetic midnight and a minimum at geomagnetic noon. On the near-equatorial side of the oval, the frequency of occurrence of auroras sharply decreases, but the shape of diurnal variations is retained. On the polar side of the oval, the frequency of occurrence of auroras decreases gradually and is characterized by complex diurnal changes.

Intensity of auroras.

Aurora Intensity determined by measuring the apparent luminance surface. Brightness surface I auroras in a certain direction is determined by the total emission 4p I photon/(cm 2 s). Since this value is not the true surface brightness, but represents the emission from the column, the unit photon/(cm 2 column s) is usually used in the study of auroras. The usual unit for measuring total emission is Rayleigh (Rl) equal to 10 6 photon / (cm 2 column s). A more practical unit of aurora intensity is determined from the emissions of a single line or band. For example, the intensity of the auroras is determined by the international brightness coefficients (ICF) according to the green line intensity data (5577 Å); 1 kRl = I MKH, 10 kRl = II MKH, 100 kRl = III MKH, 1000 kRl = IV MKH (maximum aurora intensity). This classification cannot be used for red auroras. One of the discoveries of the epoch (1957–1958) was the establishment of the spatial and temporal distribution of auroras in the form of an oval displaced relative to the magnetic pole. From simple ideas about the circular shape of the distribution of auroras relative to the magnetic pole, the transition to modern physics of the magnetosphere was completed. The honor of the discovery belongs to O. Khorosheva, and G. Starkov, J. Feldshtein, S-I. The aurora oval is the region of the most intense impact of the solar wind on the Earth's upper atmosphere. The intensity of auroras is greatest in the oval, and its dynamics are continuously monitored by satellites.

Stable auroral red arcs.

Steady auroral red arc, otherwise called the mid-latitude red arc or M-arc, is a subvisual (below the sensitivity limit of the eye) wide arc, stretched from east to west for thousands of kilometers and encircling, possibly, the entire Earth. The latitudinal extent of the arc is 600 km. The emission from the stable auroral red arc is almost monochromatic in the red lines l 6300 Å and l 6364 Å. Recently, weak emission lines l 5577 Å (OI) and l 4278 Å (N + 2) have also been reported. Persistent red arcs are classified as auroras, but they appear at much higher altitudes. The lower limit is located at an altitude of 300 km, the upper limit is about 700 km. The intensity of the quiet auroral red arc in the l 6300 Å emission ranges from 1 to 10 kRl (a typical value is 6 kRl). The sensitivity threshold of the eye at this wavelength is about 10 kR, so arcs are rarely observed visually. However, observations have shown that their brightness is >50 kR on 10% of nights. The usual lifetime of the arcs is about one day, and they rarely appear in the following days. Radio waves from satellites or radio sources crossing stable auroral red arcs are subject to scintillations, indicating the existence of electron density inhomogeneities. The theoretical explanation of the red arcs is that the heated electrons of the region F ionospheres cause an increase in oxygen atoms. Satellite observations show an increase in electron temperature along geomagnetic field lines that cross stable auroral red arcs. The intensity of these arcs correlates positively with geomagnetic activity (storms), and the frequency of occurrence of arcs correlates positively with solar sunspot activity.

Changing aurora.

Some forms of auroras experience quasi-periodic and coherent temporal intensity variations. These auroras, with a roughly stationary geometry and rapid periodic variations occurring in phase, are called changing auroras. They are classified as auroras forms R according to the International Atlas of Auroras A more detailed subdivision of the changing auroras:

R 1 (pulsating aurora) is a glow with uniform phase variations in brightness throughout the form of the aurora. By definition, in an ideal pulsating aurora, the spatial and temporal parts of the pulsation can be separated, i.e. brightness I(r,t)= I s(rI T(t). In a typical aurora R 1, pulsations occur with a frequency of 0.01 to 10 Hz of low intensity (1–2 kR). Most auroras R 1 are spots or arcs that pulsate with a period of several seconds.

R 2 (fiery aurora). This term is usually used to refer to movements like flames filling the sky, and not to describe a single form. The auroras are arc-shaped and usually move upward from a height of 100 km. These auroras are relatively rare and occur more often outside of the auroras.

R 3 (flickering aurora). These are auroras with rapid, irregular or regular variations in brightness, giving the impression of a flickering flame in the sky. They appear shortly before the collapse of the aurora. Commonly observed variation frequency R 3 is equal to 10 ± 3 Hz.

The term streaming aurora, used for another class of pulsating auroras, refers to irregular variations in brightness moving rapidly horizontally in arcs and bands of auroras.

The changing aurora is one of the solar-terrestrial phenomena accompanying pulsations of the geomagnetic field and auroral X-ray radiation caused by the precipitation of particles of solar and magnetospheric origin.

The glow of the polar cap is characterized by a high intensity of the band of the first negative N + 2 system (λ 3914 Å). Usually, these N + 2 bands are five times more intense than the green line OI l 5577 Å; the absolute intensity of the polar cap glow is from 0.1 to 10 kRl (usually 1–3 kRl). With these auroras, which appear during PCA periods, a uniform glow covers the entire polar cap up to the geomagnetic latitude of 60° at altitudes of 30 to 80 km. It is generated mainly by solar protons and d-particles with energies of 10–100 MeV, which create an ionization maximum at these heights. There is another type of glow in the aurora zones, called mantle auroras. For this type of auroral glow, the daily intensity maximum in the morning hours is 1–10 kR, and the intensity minimum is five times weaker. Observations of mantle auroras are few and their intensity depends on geomagnetic and solar activity.

Atmospheric glow is defined as radiation produced and emitted by a planet's atmosphere. This is the non-thermal radiation of the atmosphere, with the exception of the emission of auroras, lightning discharges and the emission of meteor trails. This term is used in relation to the earth's atmosphere (night glow, twilight glow and day glow). Atmospheric glow is only a fraction of the light available in the atmosphere. Other sources are starlight, zodiacal light, and daytime scattered light from the Sun. At times, the glow of the atmosphere can be up to 40% total Sveta. Airglow occurs in atmospheric layers of varying height and thickness. The atmospheric glow spectrum covers wavelengths from 1000 Å to 22.5 µm. The main emission line in the airglow is l 5577 Å, which appears at a height of 90–100 km in a layer 30–40 km thick. The appearance of the glow is due to the Champen mechanism based on the recombination of oxygen atoms. Other emission lines are l 6300 Å, appearing in the case of dissociative O + 2 recombination and emission NI l 5198/5201 Å and NI l 5890/5896 Å.

The intensity of atmospheric glow is measured in Rayleighs. The brightness (in Rayleighs) is equal to 4 rb, where c is the angular surface of the luminance of the emitting layer in units of 10 6 photon/(cm 2 sr s). The glow intensity depends on latitude (differently for different emissions), and also varies during the day with a maximum near midnight. A positive correlation was noted for the airglow in the l 5577 Å emission with the number sunspots and the flux of solar radiation at a wavelength of 10.7 cm. The glow of the atmosphere is observed during satellite experiments. From outer space, it looks like a ring of light around the Earth and has a greenish color.









Ozonosphere.

At altitudes of 20–25 km, the maximum concentration of a negligible amount of ozone O 3 (up to 2×10–7 of the oxygen content!), which occurs under the action of solar ultraviolet radiation at altitudes of about 10 to 50 km, is reached, protecting the planet from ionizing solar radiation. Despite the extremely small number of ozone molecules, they protect all life on Earth from the harmful effects of short-wave (ultraviolet and X-ray) radiation from the Sun. If you precipitate all the molecules to the base of the atmosphere, you get a layer no more than 3–4 mm thick! At altitudes above 100 km, the proportion of light gases increases, and at very high altitudes, helium and hydrogen predominate; many molecules dissociate into separate atoms, which, being ionized under the influence of hard solar radiation, form the ionosphere. The pressure and density of air in the Earth's atmosphere decrease with height. Depending on the distribution of temperature, the Earth's atmosphere is divided into the troposphere, stratosphere, mesosphere, thermosphere and exosphere. .

At an altitude of 20-25 km is located ozone layer. Ozone is formed due to the decay of oxygen molecules during the absorption of solar ultraviolet radiation with wavelengths shorter than 0.1–0.2 microns. Free oxygen combines with O 2 molecules and forms O 3 ozone, which greedily absorbs all ultraviolet light shorter than 0.29 microns. Ozone molecules O 3 are easily destroyed by short-wave radiation. Therefore, despite its rarefaction, the ozone layer effectively absorbs the ultraviolet radiation of the Sun, which has passed through higher and more transparent atmospheric layers. Thanks to this, living organisms on Earth are protected from the harmful effects of ultraviolet light from the sun.



Ionosphere.

Solar radiation ionizes the atoms and molecules of the atmosphere. The degree of ionization becomes significant already at an altitude of 60 kilometers and steadily increases with distance from the Earth. At different altitudes in the atmosphere, successive processes of dissociation of various molecules and subsequent ionization of various atoms and ions occur. Basically, these are oxygen molecules O 2, nitrogen N 2 and their atoms. Depending on the intensity of these processes, various layers of the atmosphere lying above 60 kilometers are called ionospheric layers. , and their totality is the ionosphere . The lower layer, the ionization of which is insignificant, is called the neutrosphere.

The maximum concentration of charged particles in the ionosphere is reached at altitudes of 300–400 km.

History of the study of the ionosphere.

The hypothesis of the existence of a conductive layer in the upper atmosphere was put forward in 1878 by the English scientist Stuart to explain the features of the geomagnetic field. Then in 1902, independently of each other, Kennedy in the USA and Heaviside in England pointed out that in order to explain the propagation of radio waves over long distances, it is necessary to assume the existence of regions with high conductivity in the high layers of the atmosphere. In 1923, Academician M.V. Shuleikin, considering the features of the propagation of radio waves of various frequencies, came to the conclusion that there are at least two reflective layers in the ionosphere. Then, in 1925, the English researchers Appleton and Barnet, as well as Breit and Tuve, experimentally proved for the first time the existence of regions that reflect radio waves, and laid the foundation for their systematic study. Since that time, a systematic study of the properties of these layers, generally called the ionosphere, has been carried out, playing a significant role in a number of geophysical phenomena that determine the reflection and absorption of radio waves, which is very important for practical purposes, in particular, to ensure reliable radio communications.

In the 1930s, systematic observations of the state of the ionosphere began. In our country, on the initiative of M.A. Bonch-Bruevich, installations for its pulsed sounding were created. Many have been explored general properties ionosphere, heights and electron concentration of its main layers.

At altitudes of 60–70 km, the D layer is observed; at altitudes of 100–120 km, the E, at altitudes, at altitudes of 180–300 km double layer F 1 and F 2. The main parameters of these layers are given in Table 4.

Table 4
Table 4
Ionosphere region Maximum height, km T i , K Day Night ne , cm -3 a΄, ρm 3 s 1
min ne , cm -3 Max ne , cm -3
D 70 20 100 200 10 10 –6
E 110 270 1.5 10 5 3 10 5 3000 10 –7
F 1 180 800–1500 3 10 5 5 10 5 3 10 -8
F 2 (winter) 220–280 1000–2000 6 10 5 25 10 5 ~10 5 2 10 –10
F 2 (summer) 250–320 1000–2000 2 10 5 8 10 5 ~3 10 5 10 –10
ne is the electron concentration, e is the electron charge, T i is the ion temperature, a΄ is the recombination coefficient (which determines the ne and its change over time)

Averages are given as they vary for different latitudes, times of day and seasons. Such data is necessary to ensure long-range radio communications. They are used in selecting operating frequencies for various shortwave radio links. Knowledge of their changes depending on the state of the ionosphere at different times of the day and in different seasons essential to ensure the reliability of radio communications. The ionosphere is a collection of ionized layers of the earth's atmosphere, starting at altitudes of about 60 km and extending to altitudes of tens of thousands of km. The main source of ionization of the Earth's atmosphere is the ultraviolet and X-ray radiation of the Sun, which occurs mainly in the solar chromosphere and corona. In addition, the degree of ionization of the upper atmosphere is affected by solar corpuscular streams that occur during solar flares, as well as cosmic rays and meteor particles.

Ionospheric layers

are areas in the atmosphere in which the maximum values ​​of the concentration of free electrons are reached (i.e. their number per unit volume). Electrically charged free electrons and (to a lesser extent, less mobile ions) resulting from the ionization of atmospheric gas atoms, interacting with radio waves (i.e. electromagnetic oscillations), can change their direction, reflecting or refracting them, and absorb their energy. As a result, when receiving distant radio stations, various effects may occur, for example, radio fading, increased audibility of distant stations, blackouts etc. phenomena.

Research methods.

The classical methods of studying the ionosphere from the Earth are reduced to pulse sounding - sending radio pulses and observing their reflections from various layers of the ionosphere with measuring the delay time and studying the intensity and shape of the reflected signals. By measuring the heights of reflection of radio pulses at different frequencies, determining the critical frequencies of various regions (the carrier frequency of the radio pulse for which this region of the ionosphere becomes transparent is called the critical frequency), it is possible to determine the value of the electron density in the layers and the effective heights for given frequencies, and choose the optimal frequencies for given radio paths. With the development of rocket technology and the advent of the space age of artificial Earth satellites (AES) and other spacecraft, it became possible to directly measure the parameters of the near-Earth space plasma, the lower part of which is the ionosphere.

Electron density measurements carried out from specially launched rockets and along satellite flight paths confirmed and refined data previously obtained by ground-based methods on the structure of the ionosphere, the distribution of electron density with height over different regions of the Earth, and made it possible to obtain electron density values ​​above the main maximum - the layer F. Previously, it was impossible to do this by sounding methods based on observations of reflected short-wavelength radio pulses. It has been found that in some regions of the globe there are fairly stable regions with low electron density, regular “ionospheric winds”, peculiar wave processes arise in the ionosphere that carry local ionospheric disturbances thousands of kilometers from the place of their excitation, and much more. The creation of especially highly sensitive receiving devices made it possible to carry out at the stations of pulsed sounding of the ionosphere the reception of pulsed signals partially reflected from the lowest regions of the ionosphere (station of partial reflections). The use of powerful pulse installations in the meter and decimeter wavelength ranges with the use of antennas that allow for a high concentration of radiated energy made it possible to observe signals scattered by the ionosphere at various heights. The study of the features of the spectra of these signals, incoherently scattered by electrons and ions of the ionospheric plasma (for this, stations of incoherent scattering of radio waves were used) made it possible to determine the concentration of electrons and ions, their equivalent temperature at various altitudes up to altitudes of several thousand kilometers. It turned out that the ionosphere is sufficiently transparent for the frequencies used.

Concentration electric charges(the electron density is equal to the ion one) in the earth's ionosphere at a height of 300 km is about 106 cm–3 during the day. A plasma of this density reflects radio waves longer than 20 m, while transmitting shorter ones.

Typical vertical distribution of electron density in the ionosphere for day and night conditions.

Propagation of radio waves in the ionosphere.

The stable reception of long-range broadcasting stations depends on the frequencies used, as well as on the time of day, season and, in addition, on solar activity. Solar activity significantly affects the state of the ionosphere. Radio waves emitted by a ground station propagate in a straight line, like all types of electromagnetic waves. However, it should be taken into account that both the surface of the Earth and the ionized layers of its atmosphere serve as if the plates of a huge capacitor, acting on them like the action of mirrors on light. Reflected from them, radio waves can travel many thousands of kilometers, bending around the globe in huge jumps of hundreds and thousands of kilometers, reflecting alternately from a layer of ionized gas and from the surface of the Earth or water.

In the 20s of the last century, it was believed that radio waves shorter than 200 m were generally not suitable for long-distance communications due to strong absorption. The first experiments on long-range reception of short waves across the Atlantic between Europe and America were carried out by the English physicist Oliver Heaviside and the American electrical engineer Arthur Kennelly. Independently of each other, they suggested that somewhere around the Earth there is an ionized layer of the atmosphere that can reflect radio waves. It was called the Heaviside layer - Kennelly, and then - the ionosphere.

According to modern concepts, the ionosphere consists of negatively charged free electrons and positively charged ions, mainly molecular oxygen O + and nitric oxide NO + . Ions and electrons are formed as a result of the dissociation of molecules and the ionization of neutral gas atoms by solar X-ray and ultraviolet radiation. In order to ionize an atom, it is necessary to inform it of ionization energy, the main source of which for the ionosphere is the ultraviolet, X-ray and corpuscular radiation of the Sun.

As long as the gas shell of the Earth is illuminated by the Sun, more and more electrons are continuously formed in it, but at the same time, some of the electrons, colliding with ions, recombine, again forming neutral particles. After sunset, the production of new electrons almost stops, and the number of free electrons begins to decrease. The more free electrons in the ionosphere, the better high-frequency waves are reflected from it. With a decrease in the electron concentration, the passage of radio waves is possible only in low-frequency ranges. That is why at night, as a rule, it is possible to receive distant stations only in the ranges of 75, 49, 41 and 31 m. Electrons are distributed unevenly in the ionosphere. At an altitude of 50 to 400 km, there are several layers or regions of increased electron density. These areas smoothly transition into one another and affect the propagation of HF radio waves in different ways. The upper layer of the ionosphere is denoted by the letter F. Here is the highest degree of ionization (the fraction of charged particles is about 10–4). It is located at an altitude of more than 150 km above the Earth's surface and plays the main reflective role in the long-range propagation of radio waves of high-frequency HF bands. In the summer months, the F region breaks up into two layers - F 1 and F 2. The F1 layer can occupy heights from 200 to 250 km, and the layer F 2 seems to “float” in the altitude range of 300–400 km. Usually layer F 2 is ionized much stronger than the layer F one . night layer F 1 disappears and layer F 2 remains, slowly losing up to 60% of its degree of ionization. Below the F layer, at altitudes from 90 to 150 km, there is a layer E, whose ionization occurs under the influence of soft X-ray radiation from the Sun. The degree of ionization of the E layer is lower than that of the F, during the day, reception of stations of low-frequency HF bands of 31 and 25 m occurs when signals are reflected from the layer E. Usually these are stations located at a distance of 1000–1500 km. At night in a layer E ionization sharply decreases, but even at this time it continues to play a significant role in the reception of signals from stations in the bands 41, 49 and 75 m.

Of great interest for receiving signals of high-frequency HF bands of 16, 13 and 11 m are those arising in the area E interlayers (clouds) of strongly increased ionization. The area of ​​these clouds can vary from a few to hundreds of square kilometers. This layer of increased ionization is called the sporadic layer. E and denoted Es. Es clouds can move in the ionosphere under the influence of wind and reach speeds of up to 250 km/h. In summer, in the middle latitudes during the daytime, the origin of radio waves due to Es clouds occurs 15–20 days per month. Near the equator, it is almost always present, and at high latitudes it usually appears at night. Sometimes, in years of low solar activity, when there is no passage to the high-frequency HF bands, distant stations suddenly appear with good loudness on the bands of 16, 13 and 11 m, the signals of which were repeatedly reflected from Es.

The lowest region of the ionosphere is the region D located at altitudes between 50 and 90 km. There are relatively few free electrons here. From area D long and medium waves are well reflected, and the signals of low-frequency HF stations are strongly absorbed. After sunset, ionization disappears very quickly and it becomes possible to receive distant stations in the ranges of 41, 49 and 75 m, the signals of which are reflected from the layers F 2 and E. Separate layers of the ionosphere play an important role in the propagation of HF radio signals. The impact on radio waves is mainly due to the presence of free electrons in the ionosphere, although the propagation mechanism of radio waves is associated with the presence of large ions. The latter are also of interest in the study chemical properties atmosphere, because they are more active than neutral atoms and molecules. Chemical reactions occurring in the ionosphere play an important role in its energy and electrical balance.

normal ionosphere. Observations carried out with the help of geophysical rockets and satellites have given a lot of new information, indicating that the ionization of the atmosphere occurs under the influence of broad-spectrum solar radiation. Its main part (more than 90%) is concentrated in the visible part of the spectrum. Ultraviolet radiation with a shorter wavelength and more energy than violet light rays, is emitted by the hydrogen of the inner part of the Sun's atmosphere (chromosphere), and X-rays, which have even higher energy, are emitted by the gases of the Sun's outer shell (corona).

The normal (average) state of the ionosphere is due to constant powerful radiation. Regular changes occur in the normal ionosphere under the influence of daily rotation Earth and seasonal differences in the angle of incidence of the sun's rays at noon, but there are also unpredictable and abrupt changes in the state of the ionosphere.

Disturbances in the ionosphere.

As is known, powerful cyclically repeating manifestations of activity occur on the Sun, which reach a maximum every 11 years. Observations under the program of the International Geophysical Year (IGY) coincided with the period of the highest solar activity for the entire period of systematic meteorological observations, i.e. from the beginning of the 18th century. During periods of high activity, the brightness of some areas on the Sun increases several times, and the power of ultraviolet and X-ray radiation increases sharply. Such phenomena are called solar flares. They last from several minutes to one or two hours. During a flare, solar plasma erupts (mainly protons and electrons), and elementary particles rush into outer space. The electromagnetic and corpuscular radiation of the Sun at the moments of such flares has a strong effect on the Earth's atmosphere.

The initial reaction is noted 8 minutes after the flash, when intense ultraviolet and X-ray radiation reaches the Earth. As a result, ionization sharply increases; x-rays penetrate the atmosphere to the lower boundary of the ionosphere; the number of electrons in these layers increases so much that the radio signals are almost completely absorbed ("extinguished"). Additional absorption of radiation causes heating of the gas, which contributes to the development of winds. The ionized gas is electrical conductor, and when it moves in the Earth's magnetic field, the dynamo effect appears and there is electricity. Such currents can, in turn, cause noticeable perturbations of the magnetic field and manifest themselves in the form of magnetic storms.

The structure and dynamics of the upper atmosphere is essentially determined by thermodynamically nonequilibrium processes associated with ionization and dissociation by solar radiation, chemical processes, excitation of molecules and atoms, their deactivation, collision, and other elementary processes. In this case, the degree of nonequilibrium increases with height as the density decreases. Up to altitudes of 500–1000 km, and often even higher, the degree of nonequilibrium for many characteristics of the upper atmosphere is sufficiently small, which allows one to use classical and hydromagnetic hydrodynamics with allowance for chemical reactions to describe it.

The exosphere is the outer layer of the Earth's atmosphere, starting at altitudes of several hundred kilometers, from which light, fast-moving hydrogen atoms can escape into outer space.

Edward Kononovich

Literature:

Pudovkin M.I. Fundamentals of solar physics. St. Petersburg, 2001
Eris Chaisson, Steve McMillan Astronomy today. Prentice Hall Inc. Upper Saddle River, 2002
Online materials: http://ciencia.nasa.gov/