Портал о ремонте ванной комнаты. Полезные советы

Адгезия, прилипание (adhesion). Адгезия – важное свойство твердых и жидких тел в промышленных отраслях Адгезия раствора

Определение понятия адгезии. Классификация адгезионных соединений в стоматологии. Механизмы образования адгезионных соединений. Условия образования и характер разрушения адгезионных соединений.

Адгезия - это явление, возникающее при соединении разнородных материалов, приведенных в близкий контакт, для разделения которых следует приложить усилие. Когда два материала приведены в такой близкий контакт друг с другом, при котором могут взаимодействовать их поверхностные мономолекулярные слои, молекулы одного вещества определенным образом взаимодействуют с молекулами другого, испытывая взаимное притяжение. Силы этого притяжения называются силами адгезии или адгезионными силами. В отличие от когезионных сил (сил когезии), которые обусловливают взаимное притяжение молекул одного и того же вещества в его объеме.

Материал или слой, который наносят, чтобы получить адгезионное соединение, называют адгезивом. Материал, на который наносят адгезив, называется субстратом.

Адгезия встречается во многих случаях применения восстановительных материалов в стоматологии. Например, при соединении пломбы со стенками полости зуба, герметика и лака с зубной эмалью. При фиксации несъемных зубных протезов цементами. В ортодонтии на принципах адгезии крепятся брекеты к поверхности зубов. Адгезия присутствует и в комбинированных протезах, в которых стремятся придать восстановлению эстетические и функциональные свойства, а именно при использовании фарфора и металла в металлокерамических протезах, пластмассы и металла - в металлопластмассовых.

На схеме 3.1 представлена классификация адгезионных соединений, используемых в стоматологии.

Схема 3.1. Классификация видов адгезионных соединений в стоматологии

Следует подчеркнуть существенное различие между адгезионными соединениями восстановительных материалов с тканями живого организма и соединениями разнородных материалов, которые применяются в зубных протезах.

Различают несколько механизмов образования адгезионного соединения за счет различных типов адгезионных связей (классификация типов адгезионных связей дана на схеме 3.2).

Механическая адгезия заключается в заклинивании адгезива в порах или неровностях поверхности субстрата. Оно может происходить на микроскопическом уровне, как в случае соединения полимера с протравленной эмалью зуба, или на макроуровне, когда пластмассовая облицовка наносится на поверхность металлического каркаса, имеющего специальные захваты. Наглядным примером механической адгезии может служить фиксация несъемных зубных протезов неорганическим цементом, например цинк-фосфатным цементом.

Более прочного и надежного соединения можно достигнуть с помощью химической адгезии. Она основана на химическом взаимодействии двух материалов или фаз, составляющих адгезионное соединение. Такой тип адгезии присущ водным цементам на полиакриловой

Схема 3.2. Типы адгезионных связей*

кислоте, в которой присутствуют функциональные группы, способные образовывать химическое соединение с твердыми тканями зуба, прежде всего с кальцием гидроксилапатита.

Диффузионное соединение образуется в результате проникновения структурной фазы или компонентов одного материала в поверхность другого с образованием «гибридного» слоя, в котором содержатся обе фазы.

На практике трудно найти случай адгезионного соединения, в котором в чистом виде был бы представлен какой-либо из перечисленных механизмов адгезии. В большинстве случаев при использовании материалов различной химической природы для восстановления зубов имеет место адгезионное взаимодействие и механического, и диффузионного, и химического характера.

Условия создания прочного адгезионного соединения:

1. Чистота поверхности, на которую наносят адгезив. На поверхности субстрата не должно быть пыли, посторонних частиц, адсорбированных монослоев влаги и других загрязнений.

2. Пенетрация (проникновение) жидкого адгезива в поверхность субстрата. Пенетрация зависит от способности адгезива смачивать поверхность субстрата.

Смачивание характеризует способность капли жидкости растекаться на твердой поверхности. Мерой смачивания является контактный угол смачивания (Θ), который образуется между поверхностями жидкого и твердого тел на границе их раздела (рис. 3.1).

* На основе классификации WJ. O"Brien «Dental Materials and Their Selection», Quintessence Publ. Co., Inc, 3 изд., с. 66.

Рис. 3.1. Контактный угол смачивания

При полном смачивании контактный угол равен 0°. Малые значения контактного угла характеризуют хорошее смачивание. При плохом смачивании контактный угол больше 90°. Хорошее смачивание способствует капиллярному проникновению и говорит о сильном взаимном притяжении молекул на поверхностях жидкого адгезива и твердого тела-субстрата.

Образование сильных химических связей на поверхности раздела существенно увеличит количество мест прикрепления одного материала к другому. Предполагается, что именно так происходит между фарфоровой облицовкой и оксидом олова, нанесенным на поверхности сплавов с большим содержанием благородных металлов.

3. Минимальная усадка и минимальные внутренние напряжения при твердении (отверждении) адгезива на поверхности субстрата.

4. Минимально возможные термические напряжения. Если адгезив и субстрат имеют различные коэффициенты термического расширения, то при нагревании этого соединения клеевой шов будет испытывать напряжение. Например, на металлический каркас нанесена фарфоровая облицовка в процессе обжига фарфора при высокой температуре, а затем металлокерамический протез охладили до комнатной температуры. Если для этой пары подобраны материалы с близкими коэффициентами термического расширения, то возникающие при этом напряжения в слое фарфора будут минимальными.

5. Возможное влияние коррозионной среды. Присутствие воды, способствующих коррозии жидкостей или паров часто приводит к ухудшению адгезионной связи. Среда полости рта с ее высокой влажностью, присутствием слюны, пищевых продуктов, изменчивым рН, непостоянной температурой и наличием микрофлоры признана агрессивной. Это оказывает значительное влияние на надежность и долговечность адгезионных соединений восстановительных материалов в полости рта.

Об адгезии обычно судят по величине адгезионной прочности, т.е. по сопротивлению разрушению адгезионного соединения. Как следует из определения адгезии, достаточно измерить приложенное усилие для разделения составляющих адгезионную пару материалов, чтобы определить прочность данного соединения. Однако не так просто достигнуть того, чтобы измеренное усилие разделения склеенной пары численно соответствовало именно адгезионной прочности. Поэтому так много методов предложено для измерения различных адгезионных соединений, применяющихся в стоматологии. При всем многообразии вариантов в них присутствуют только три механизма разрушения: при растяжении, сдвиге и неравномерном отрыве.

При испытании адгезионного соединения обязательно обращают внимание на характер разрушения. Различают адгезионное (адгезионный отрыв) и когезионное разрушение. Очевидно, что поверхность разрушения проходит по наиболее слабому звену соединения.

Отправим материал вам на e-mail

Это сцепление различных по своему составу и структуре материалов, обусловленное их физическими и химическими свойствами. Термин адгезия произошёл от латинского слова adhesion – прилипание. В строительстве дают более узконаправленное и специфическое обозначение тому, что такое адгезия – это способность декоративно-отделочных покрытий (ЛКМ, штукатурки), герметизирующих или клеящих смесей к прочному и надёжному соединению с внешней поверхностью материала основания.

Впечатляющая демонстрация эффекта адгезии современных клеевых составов

Важно! Следует различать понятия адгезии и когезии. Адгезия соединяет разнотипные материалы, затрагивая только поверхностный слой. К примеру, краска на металлической поверхности. Когезия - это соединение однотипных материалов, в результате которого образуются межмолекулярные взаимодействия.

Адгезия является одним из ключевых свойств материалов в следующих областях:

  1. Металлургия – антикоррозионные покрытия.
  2. Механика – слой смазки на поверхности элементов машин и механизмов.
  3. Медицина – стоматология.
  4. Строительство. В данной отрасли адгезия является одним из главных показателей качества выполнения работ и надёжности конструкций.

Практически на всех этапах строительства контролируются показатели адгезии для следующих соединений:

  • лакокрасочные материалы;
  • штукатурные смеси, стяжки и заливки;
  • клеящие составы, кладочные растворы, герметики и т.п.


Пример химической адгезии — реакция соединения силиконового герметика со стеклом

Существует три основных принципа адгезионного соединения материалов. В строительстве и технологии они проявляются следующим образом:

  1. Механический — сцепление происходит путем прилипания наносимого материала к основанию. Механизм такого соединения заключается в проникновении наносимого вещества в поры внешнего слоя или соединении с шероховатой поверхностью. Примером, является окраска поверхности бетона или металла.
  2. Химический — связь между материалами, в том числе различной плотности, происходит на атомном уровне. Для образования такой связи необходимо присутствие катализатора. Примером адгезии такого типа является пайка или сварка.
  3. Физический — на сопрягаемых поверхностях возникает электромагнитная межмолекулярная связь. Может образоваться в результате возникновения статического заряда или под воздействием постоянного магнитного или электромагнитного поля. Пример использования в технологии — окрашивание различных поверхностей в электромагнитном поле.

Адгезионные свойства строительных и отделочных материалов

Адгезия строительных и отделочных материалов осуществляется, преимущественно, по принципу механического и химического соединения. В строительстве используется большое количество различных веществ, эксплуатационные характеристики и специфика взаимодействия которых кардинальным образом отличаются. Разделим их на три основные группы и охарактеризуем более подробно.

Лакокрасочные материалы

Адгезия ЛКМ к поверхности основания осуществляется по механическому принципу. При этом, максимальные показатели прочности достигаются в том случае, если рабочая поверхность материала имеет шероховатости или пористая. В первом случае существенно увеличивается площадь соприкосновения, во втором, краска проникает в поверхностный слой основания. Кроме того, адгезионные свойства ЛКМ увеличиваются благодаря различным модифицирующим добавкам:

  • органосиланы и полиорганосилоксаны оказывают дополнительное гидрофобизирующее и антикоррозионное действие;
  • полиамидные и полиэфирные смолы;
  • металлоорганические катализаторы химических процессов отвердения ЛКМ;
  • балластные мелкодисперсные наполнители (к примеру, тальк).


Краска с тальковым наполнителем — не вспучивающийся антипирен

Строительные штукатурки и сухие клеящие смеси

До недавнего времени, строительные и отделочные работы велись с использованием различных растворов на основе гипса, цемента и извести. Зачастую, их смешивали в определённой пропорции, что давало ограниченное изменение их основных свойств. Современные готовые сухие строительные смеси: стартовые, финишные и мультифинишные штукатурки и шпаклевки, имеют гораздо более сложный состав. Широко применяются добавки различного происхождения:

  • минеральные - магнезиальные катализаторы, жидкое стекло, глиноземистый, кислотоустойчивый или безусадочный цемент, микрокремнезём и т.п.
  • полимерные - диспергируемые полимеры (ПВА, полиакрилаты, винилацетаты и т.п.).

Такие модификаторы существенно изменяют следующие основные характеристики строительных смесей:

  • пластичность;
  • водоудерживающие свойства;
  • тиксотропность.

Важно! Использование полимерных модификаторов даёт более выраженный эффект усиления адгезии. Однако образование устойчивых соединений полимерных плёнок на границе разнотипных материалов (основание - твердеющая штукатурка) возможно только при определённой температуре. Этот термин называется минимальной температурой плёнкообразования – МТП. У разных штукатурок она может быть различной от +5°С до +10°С. Во избежание расслоения, необходимо точно придерживаться рекомендаций производителя относительно температуры, как окружающей среды, так и основания.

Герметики

Герметики, использующиеся в строительстве, различают по трём различным типам, каждый из которых требует определённых условий для высокопрочной адгезии с материалом основания. Рассмотрим каждый тип подробнее.

  • Высыхающие герметики. В состав входят различные полимеры и органические растворители: бутадиен-стирольные или нитрильные, хлоропреновый каучук и т.п. Как правило, имеют пастообразную консистенцию с вязкостью 300-550 Па. В зависимости от вязкости, наносятся либо шпателем, либо кистью. После их нанесения на поверхность, необходимо определённое время для высыхания (испарения растворителя) и образования полимерной плёнки.


  • Невысыхающие герметики. Состоят, как правило, из каучука, битума и различных пластификаторов. Имеют ограниченную устойчивость к высокой температуре, не более 70 0 С-80 0 С, после чего начинают деформироваться.

  • Отверждающиеся герметики. После их нанесения, под воздействием различных факторов: влага, тепло, химические реагенты, происходит необратимая реакция полимеризации.

Из всех перечисленных разновидностей, отверждающиеся герметики обеспечивают максимальную надёжность сцепления с микронеровностями поверхности основания. Кроме того, они устойчивы к высоким температурам, механическим и химическим воздействиям. Они имеют оптимальное сочетание жёсткости и вязкости, позволяющее сохранять первоначальную форму. Однако, являются наиболее дорогостоящими и сложными в использовании.

Как измеряется адгезия?

Технология измерения адгезии, способы испытания, а также все показатели прочности соединения материалов указаны в следующих нормативах:

  • ГОСТ 31356-2013 - шпаклёвки и штукатурки;
  • ГОСТ 31149-2014 - лакокрасочные материалы;
  • ГОСТ 27325 - ЛКМ к дереву и т.п.
Информация! Адгезия измеряется в кгс/см 2 , МПа (мегапаскали) или кН (килоньютоны) - это показатель силы, которую необходимо приложить, для разделения материалов основания и покрытия.

Если раньше адгезионные характеристики материалов можно было измерять только в лабораторных условиях, то на данный момент существует множество приборов, которые можно использовать непосредственно на строительной площадке. Большинство методов измерения адгезии, как «полевых», так и лабораторных связаны с разрушением внешнего, покрывающего, слоя. Но есть несколько устройств, принцип действия которых основан на ультразвуке.

  • Нож адгезиметр. Используется для определения параметров адгезии методом решётчатых и или параллельных надрезов. Применяется для лакокрасочных и плёночных покрытий толщиной до 200 мкм.

  • Пульсар 21. Устройство определяет плотность материалов. Используется для выявления трещин и расслоений в бетоне как штучном, так и монолитном. Существуют специальные прошивки и подпрограммы, которые по плотности прилегания, позволяют определить прочность адгезии штукатурок различных типов к бетонным поверхностям.

  • СМ-1У. Используется для определения адгезии полимерных и битумных изоляционных покрытий методом частичного разрушения – сдвига. Принцип измерения основан на выявлении линейных деформаций изоляционного материала. Как правило, применяется для определения прочности изоляционного покрытия трубопроводов. Допускается использование для проверки качества нанесение битумной гидроизоляции на строительные конструкции: стены подвалов и цокольных этажей, плоские крыши и т.п.

Факторы, снижающие адгезию материалов

На снижение адгезии оказывают влияние различные физические и химические факторы. К физическим относится температура и влажность окружающей среды в момент нанесения декоративно-отделочных или защитных материалов. Также снижают адгезионные взаимодействия различные загрязнения, в частности, пыль покрывающая поверхность основания. В процессе эксплуатации влияние на прочность соединения лакокрасочных материалов может оказывать ультрафиолетовое излучение.

Химические факторы, снижающие адгезию, представлены различными материалами загрязняющими поверхность: бензин и масла, жиры, кислотные и щелочные растворы и т.п.

Также адгезию отделочных материалов могут снижать различные процессы, возникающие в строительных конструкциях:

  • усадка;
  • растягивающие и сжимающие напряжения.
Информация! Вещество, наносимое на поверхность для увеличения силы сцепления между основанием и отделочным материалом, называется адгезивом. Основание, на которое наносится адгезив, называется субстратом.

Методы повышения адгезии

В строительстве существует несколько универсальных способов повышения адгезии декоративных отделочных материалов с поверхностью основания:

  1. Механический – поверхности основания придают шероховатость, чтобы увеличить площадь соприкосновения. Для этого её обрабатывают различными абразивными материалами, наносят насечки и т.п.
  2. Химический – в состав наносимых защитно-отделочных материалов добавляют различные вещества. Это, как правило, полимеры, образующие более прочные связи и придающие материалу дополнительную эластичность.
  3. Физико-химический – поверхность основания обрабатывают грунтовкой, изменяющей основные химические параметры материала и оказывающей влияние на определённые физические свойства. К примеру, снижение влагопоглощения у пористых материалов, закрепление рыхлого внешнего слоя и т.п.

Способы увеличения адгезии к различным материалам

Более подробно остановимся на методах повышения адгезии для различных материалов, применяемых в строительстве.

Бетон

Бетонные стройматериалы и конструкции повсеместно применяются в строительстве. За счёт высокой плотности и гладкости поверхности их потенциальные адгезионные показатели довольно низкие. Для увеличения прочности соединения отделочных составов необходимо учесть следующие параметры:

  • сухая или влажная поверхность. Как правило, адгезия к сухой поверхности выше. Однако были разработаны множество клеевых смесей, требующих предварительного смачивания поверхности основания. В данном случае необходимо обращать внимание на требования производителя;
  • температура окружающей среды и основания. Большинство отделочных материалов наносится на бетонные поверхности при температуре воздуха не менее +5°С...+7°С. При этом бетон не должен быть замёрзшим;
  • грунтовка. Используется в обязательном порядке. Для плотных бетонов, это составы с наполнителем из кварцевого песка (бетонконтакт), для пористых бетонов (пено-, газобетон), это грунтовки глубокого проникновения на основе акриловых дисперсий;
  • добавление модификаторов. Готовые сухие штукатурные смеси уже имеют в своем составе различные адгезионные добавки. Если штукатурка замешивается самостоятельно, то в неё рекомендуется добавить: ПВА, акриловую грунтовку, вместо такого же количества воды, силикатный клей, придающий отделочному материалу дополнительные влагоотталкивающие свойства.

Металл

Ключевую роль в прочности соединения лакокрасочных материалов с металлической поверхностью играет способ и качество подготовки поверхности. В домашних условиях рекомендуется выполнить следующие действия:

  • обезжиривание – обработка металла различными растворителями: 650, 646, Р-4, уайт-спирит, ацетон, керосин. В крайнем случае, поверхность протирается бензином;
  • матирование – обработка основания абразивными материалами;
  • грунтование – использование специальных красок праймеров. Они реализуются в комплекте с декоративными ЛКМ определённого типа.
Важно! Адгезия свинца, алюминия и цинка намного ниже, чем у чугуна и стали. Причина заключается в том, что эти металлы образуют на своей поверхности оксидные плёнки. Поэтому отслаивание лакокрасочных покрытий происходит по оксидному слою. Окрашивание этих материалов рекомендуется осуществлять сразу после удаления плёнки механическим или химическим способом.

Древесина и древесные композиты

Древесина является пористой поверхностью с большим количеством неровностей и не испытывает особых проблем с прочностью соединения отделочных материалов. Но нет предела совершенству, поэтому были разработаны различные технологии для улучшения адгезии в сочетании с сохранением защитных и декоративных свойств самой отделки. Их использование, к примеру, в сочетании с акриловыми красками, значительно улучшает атмосферостойкость, устойчивость к ультрафиолетовому выцветанию, придает биологическую защиту материалу. Поверхность древесины обрабатывается самыми разнообразными грунтовками, чаще всего, на основе боразотных соединений и нитроцеллюлозы.

Адгезия при сварочных работах

Сварка является одним из наиболее прочных методов соединения металлических конструкций. Это сцепление молекул двух элементов без использования промежуточных или вспомогательных веществ — клея или припоя. Происходит данный процесс под воздействием термической активации. Внешний слой соединяемых элементов нагревают выше температуры плавления, после чего происходит межмолекулярное сближение и соединение материалов.

Препятствием к качественной адгезии при сварке могут служить следующие факторы:

  • наличие оксидных плёнок. Они удаляются механически или химически при подготовке поверхности или исчезают непосредственно в процессе сварки под воздействием высокой температуры или флюсов;
  • несоответствие химического состава материалов и электродов. Особое внимание следует уделять наличию и количеству кремния и углерода в соединяемых деталях. Для соединения сталей разных марок рекомендуется использовать электроды с низким содержанием диффузионного водорода;
  • недостаточная глубина проплавления, которая напрямую зависит от силы тока и скорости передвижение электрода.

Словарь медицинских терминов

адгезия (лат. adhaesio прилипание, слипание; сип. адгезивный процесс) в морфологии

сращение серозных оболочек в результате воспаления.

Новый толково-словообразовательный словарь русского языка, Т. Ф. Ефремова.

адгезия

ж. Слипание поверхностей двух соприкасающихся разнородных твердых или жидких тел (в физике).

Энциклопедический словарь, 1998 г.

адгезия

АДГЕЗИЯ (от лат. adhaesio - прилипание) сцепление поверхностей разнородных тел. Благодаря адгезии возможны нанесение гальванических и лакокрасочных покрытий, склеивание, сварка и др., а также образование поверхностных пленок (напр., оксидных).

Адгезия

(от лат. adhaesio ≈ прилипание), слипание поверхностей двух разнородных твёрдых или жидких тел. Пример А. ≈ прилипание капелек воды к стеклу. А. обусловлена теми же причинами, что и адсорбция . Количественно А. характеризуется удельной работой, затрачиваемой на разделение тел. Эта работа рассчитывается на единицу площади соприкасающихся поверхностей и зависит от того, как производится их разделение: сдвигом вдоль поверхности раздела или отрывом в направлении, перпендикулярном поверхности. А. иногда оказывается больше, чем когезия, характеризующая силу сцепления частиц внутри данного тела. В этом случае разрыв происходит когезионно ≈ внутри наименее прочного из соприкасающихся тел.

А. твёрдых тел с неровной поверхностью обычно невелика, т. к. они фактически соприкасаются только отдельными выступающими участками своих поверхностей. А. жидкости и твёрдого тела и двух несмешивающихся жидкостей достигает предельно высокого значения вследствие полного контакта по всей площади соприкосновения. При покрытии твёрдого тела полимером в текучем состоянии последний проникает в углубления и поры. После отвердевания полимера возникает связь, иногда называемая механической А. В этом случае для отрыва полимерной плёнки необходимо преодолеть когезию в затвердевшем полимере. Для достижения предельной А. твёрдые тела соединяют в пластическом или эластичном состоянии под давлением, например при склеивании резиновым клеем или при холодной сварке металлов. Прочная А. достигается также при образовании новой твёрдой фазы на поверхности раздела, например в случае гальванических покрытий, или при возникновении поверхностных химических соединений (окисные, сульфидные и др. плёнки).

А. полимеров происходит лучше в том случае, если макромолекулы полярны и имеют большое число химически активных функциональных групп. Для улучшения А. в состав клея или плёнкообразующего полимера вводят активные добавки, молекулы которых одним концом прочно связываются с плёнкой, другим ≈ с подложкой, образуя ориентированный адсорбционный слой. При контакте двух объёмов одного и того же полимера может произойти автогезия (самослипание), когда имеет место диффузия макромолекул или их участков из одного объёма в другой. При этом прочность связи со временем увеличивается, стремясь к пределу ≈ когезионной прочности.

Явление А. имеет место при сварке, паянии, лужении, склеивании, при изготовлении фотоматериалов, а также при нанесении лакокрасочных полимерных покрытий, предохраняющих металлические детали от коррозии; причинами нарушения А. в последнем случае являются напряжения, возникающие вследствие усадки плёнки, а также различие коэффициентов теплового расширения плёнки и металла.

А. не только является условием образования высококачественного покрытия, связующего сварного или клеевого шва, но также и вызывает повышенный износ трущихся деталей. Для устранения А. вводят слой смазки, препятствующий контакту поверхностей.

Лит.: Кротова Н. А., О склеивании и прилипании, М., 1956; Воюцкий С. С., Аутогезия и адгезия высокополимеров, М., 1960; Дерягин Б. В., Кротова Н. А., Адгезия, М.≈ Л., 1949.

В. И. Шимулис.

Википедия

Адгезия

Адгезия в физике - сцепление поверхностей разнородных твёрдых и/или жидких тел. Адгезия обусловлена межмолекулярными взаимодействиями (Ван-дер-Ваальсовыми, полярными, иногда - взаимной диффузией) в поверхностном слое и характеризуется удельной работой, необходимой для разделения поверхностей. В некоторых случаях адгезия может оказаться сильнее, чем когезия , то есть сцепление внутри однородного материала, в таких случаях при приложении разрывающего усилия происходит когезионный разрыв, то есть разрыв в объёме менее прочного из соприкасающихся материалов.

Адгезия существенно влияет на природу трения соприкасающихся поверхностей: так, при взаимодействии поверхностей с низкой адгезией трение минимально. В качестве примера можно привести политетрафторэтилен (тефлон), который в силу в значения адгезии в сочетании с большинством материалов обладает низким коэффициентом трения. Некоторые вещества со слоистой кристаллической решёткой (графит , дисульфид молибдена), характеризующиеся одновременно низкими значениями адгезии и когезии, применяются в качестве твёрдых смазок.

Наиболее известные адгезионные эффекты - капиллярность , смачиваемость /несмачиваемость, поверхностное натяжение , мениск жидкости в узком капилляре, трение покоя двух абсолютно гладких поверхностей. Критерием адгезии в некоторых случаях может быть время отрыва слоя материала определенного размера от другого материала в ламинарном потоке жидкости.

Адгезия имеет место в процессах склеивания, пайки, сварки, нанесения покрытий. Адгезия матрицы и наполнителя композитов является также одним из важнейших факторов, влияющих на их прочность.

В биологии клеточная адгезия - не просто соединение клеток между собой, а такое их соединение, которое приводит к формированию определённых правильных типов гистологических структур, специфичных для данных типов клеток. Специфичность клеточной адгезии определяется наличием на поверхности клеток белков клеточной адгезии - интегринов, кадгеринов и др. Например, адгезия тромбоцитов на базальной мембране и на коллагеновых волокнах повреждённой сосудистой стенки.

В антикоррозионной защите адгезия лакокрасочного материала к поверхности - наиболее важный параметр, влияющий на долговечность покрытия. Адгезия – прилипание лакокрасочного материала к окрашенной поверхности, одна из основных характеристик промышленных ЛКМ. Адгезия лакокрасочных материалов может иметь механическую, химическую или электромагнитную природу и измеряется силой отрыва лакокрасочного покрытия на единицу площади подложки. Хорошая адгезия лакокрасочного материала к окрашиваемой поверхности может быть обеспечена лишь при тщательной очистке поверхности от грязи , жира, ржавчины и прочих загрязнений. Также для обеспечения адгезии необходимо достичь заданной толщины покрытия, для чего используются толщиномеры мокрого слоя. Для оценки адгезии/когезии приняты и утверждены критерии

Примеры употребления слова адгезия в литературе.

Отрицательные ионы, разгоняясь в циклотроне, приобретают центростремительную тенденцию, то есть стремятся больше к адгезии , чем к рассеиванию.

Вначале синий играет роль пассивного центра адгезии , и в результате формируется агломерат, не имеющий свойств кодона, но активно собирающий те фрагменты информагентов, которые мы условно назвали грязью.

Отвержденные эпоксидные смолы отличаются малой усадкой, высокой адгезией , механической прочностью, влагостойкостью, хорошими электроизоляционными свойствами.

15927 0

Во-первых, давайте предположим, что первое условие для адгезии, соблюдать близкий контакт на молекулярном уровне между адгезивом и субстратом. А теперь представим, что будет происходить после того, как материалы вступят в контакт, и как они будут взаимодействовать. Адгезионная связь может быть механической, физической или химической, но обычно она представляет собой комбинацию этих видов связи.

Механическая адгезия

Простейшим видом адгезии является механическое сцепление компонентов адгезива с поверхностью субстрата. Эта адгезия образуется за счет присутствия таких неровностей поверхности, как углубления, трещины, щели, при развитии которых образуются микроскопические поднутрения.

Основным условием образования механической адгезии является способность адгезива легко проникать в углубления на поверхности субстрата, а затем твердеть. Это условие зависит от смачивания поверхности субстрата адгезивом, которая, в свою очередь, связана с соотношением поверхностных энергий материалов, находящихся в контакте, определяющим величину контактного угла смачивания. Идеальной ситуацией является полное смачивание субстрата адгезивом. Для улучшения контакта перед нанесением адгезива следует избавиться от воздуха или пара, присутствующих в углублениях. Если адгезив сможет заполнить поднутрения и затем затвердеть, то, естественно, он блокируется поднутрениями (Рис. 1.10.7).

Рис. 1.10.7. Механическое зацепление между адгезивом и субстратом на микроскопическом уровне

Степень проникновения адгезива в поднутрения зависит как от давления, которое было приложено при его нанесении, так и от свойств самого адгезива. Если попытаться оторвать адгезив от субстрата, то это можно сделать лишь путем его разрыва, так как адгезив невозможно извлечь из поднутрений. Концепция механической адгезии не противоречит условиям для крепления или ретенции несъемных зубных протезов, используемой при их фиксации, за исключением тех явлений, которые происходят на микроскопическом уровне. Важное отличие между этими концепциями заключается в том, что хорошая смачиваемость не является необходимым условием макроретенции, тогда как она играет определяющую роль в создании механического зацепления на микроскопическом уровне.

В целом, поднутрения часто увеличивают механическую прочность соединения, однако обычно этого недостаточно, чтобы был задействован механизм самой (специфической) адгезии. Существует ряд дополнительных механизмов адгезии, вызванных физическими и химическими причинами. Термин истинная или специфическая адгезия обычно используется для того, чтобы отличить физическую и химическую адгезию от механической, однако от подобных терминов лучше отказаться, поскольку они не совсем точны.

Понятие истинной адгезии предполагает, что кроме нее существует адгезия ложная, однако в действительности адгезия либо существует, либо ее нет. Физическая и химическая отличаются от механической адгезии тем, что первые вовлекают адгезив и субстрат в молекулярное взаимодействие друг с другом, в то время как для механической такое взаимодействие на поверхности раздела двух фаз не требуется.

Физическая адгезия

При близком контакте двух плоскостей образуются вторичные связи за счет диполь-дипольного взаимодействия между поляризованными молекулами. Величина возникших сил притяжения очень невелика, даже если они и обладают высоким значением дипольного момента или повышенной полярностью.

Величина энергии связи зависит от относительной ориентации диполей в двух плоскостях, однако обычно эта величина составляет не более 0,2 электрон-вольта. Это значение намного меньше, чем у первичных связей, таких, как ионные или ковалентные, у которых энергия связи обычно колеблется в пределах от 2,0 до 6,0 электрон-вольт.

Вторичные связи за счет диполь-дипольного взаимодействия возникают очень быстро (поскольку для их возникновения не нужна энергия активации) и являются обратимыми (так как молекулы на поверхности вещества остаются химически незатронутыми). Это слабое адсорбционное физическое притяжение легко разрушается при повышении температуры, и оно не подходит для тех случаев, когда требуется постоянное соединение. Тем не менее, такие связи, как водородная, могут стать важнейшей предпосылкой к образованию химической связи.

Из этого следует, что соединение неполярных жидкостей с полярными твердыми веществами затруднено, и наоборот, поскольку между этими двумя веществами будет отсутствовать взаимодействие на молекулярном уровне, даже при их близком контакте. Такое поведение наблюдается у жидких силиконовых полимеров, которые являются неполярными и поэтому не образуют вторичных связей с твердыми поверхностями. Связи с ними возможны только при прохождении химической реакции сшивания, которая создаст места соединений между жидкостью и твердым телом.

Химическая адгезия

Если после адсорбции на поверхности молекула диссоциирует, и затем ее функциональные группы, каждая в отдельности, смогут соединяться ковалентными или

ионными связями с поверхностью, то в результате образуется прочная адгезионная связь. Такую форму адгезии называют хемосорбцией, и она может быть по своей природе как ионной, так и ковалентной.

Химическая связь отличается от физической тем, что два соседних атома совместно обладают одними и теми же электронами. Поверхность адгезива должна быть прочно соединена с поверхностью субстрата через химические связи, поэтому необходимо присутствие реакционноспособных групп на обеих поверхностях. В частности, это относится к образованию ковалентных связей, что происходит, например, при связывании реакционноспособных изоцианатов с полимерными поверхностями, содержащими гидроксильные и аминные группы (Рис. 1.10.8).

Рис. 1.10.8. Образование ковалентной связи между изоцианатом и гидроксильными и аминными группами на поверхности субстрата

В отличие от неметаллических соединений, между твердым и жидким металлами легко образуется металлическая связь — этот механизм лежит в основе паяния. Металлическая связь возникает за счет свободных электронов и не зависит от присутствия реакционноспособных групп. Однако эта связь возможна только в том случае, если металлические поверхности будут идеально чистыми. На практике это означает, что для удаления оксидных пленок необходимо использовать флюсы, в противном случае эти пленки будут препятствовать контакту между атомами металлов.

Единственным путем отделения адгезива от субстрата является механический разрыв химических связей, однако это не означает, что в первую очередь будут разорваны именно эти, а не другие валентные связи. Это накладывает ограничения на прочность, которую можно достичь в соединении. Если прочность склеивания или адгезионного соединения окажется выше прочности при растяжении материалов адгезива или субстрата, тогда раньше, чем разрушится адгезионное соединение, произойдет разрушении когезионное адгезива или субстрата.

Адгезия переплетением молекул (Диффузионный механизм адгезии)

До сих пор мы исходили из предположения, что между адгезивом и субстратом существует четко выраженная поверхность раздела. Обычно адгезив адсорбируется поверхностью субстрата и может рассматриваться, как поверхностноактивное вещество, которое накапливается на поверхности, но не проникает вглубь. В некоторых же случаях адгезив или один из его компонентов способны проникать внутрь поверхности субстрата, а не накапливаться на ней. Следует подчеркнуть, что абсорбция молекул возникает в результате хорошего смачивания поверхности, а не является его причиной.

Если абсорбированный компонент представляет собой молекулу с длинной цепью, или образует молекулу с длинной цепью после поглощения субстратом, то в результате может произойти переплетение или взаимодиффузия молекул адгезива и субстрата, которое приведет к очень высокой адгезионной прочности (Рис. 1.10.9).

Рис. 1.10.9. Диффузионный переходный слой, образо ванный взаимным переплетением молекулярных фрагментов адгезива и субстрата

Это равенство называется уравнением Дюпре. Оно означает, что работа адгезии (W) является суммой свободных поверхностных энергий твердого тела (у) и жидкости (y|v) за вычетом энергии на поверхности раздела между жидкостью и твердым телом (ysl).

Из уравнения Юнга следует,

Ysv Ysi = Ysi cose

Адгезия будет максимальной при полном (идеальном) смачивании, т.е. в случае, когда cosq = 1, следовательно, энергией склеенных поверхностей и энергиями каждой из этих поверхностей в отдельности (Рис. 1.10.10).

Рис. 1.10.10. Отделение жидкости от твердой поверхности с образованием двух новых поверхностей

Поверхностное натяжение жидкого углеводорода составляет приблизительно 30 мДж/м. Если предположить, что силы притяжения убывают до нуля на расстоянии 3 х 10~ метров, то сила, требуемая для того, чтобы отделить жидкость от твердой поверхности равна работе адгезии, деленной на расстояние, и равна 200 МПа.

Фактически, эта величина значительно выше.

Таким образом, адгезивы должны сильно химически притягиваться поверхностью субстратов для обеспечения высокой адгезионной прочности.

Клиническое значение

Врачу необходимо знать, какой вид связи он стремится получить, а для этого требуется понимание этапов создания адгезионного соединения. Это позволит избежать ошибок в работе.

Основы стоматологического материаловедения
Ричард ван Нурт

Во время проведения масштабных или ремонтных бетонных работ очень часто возникают ситуации, когда нет возможности провести одномоментную заливку всей бетонной конструкции.

В результате в месте контакта слоев бетона возникают холодные швы, которые ведут к потере прочности, нарушению водонепроницаемости, отслоению и другим «неприятностям».

В связи с этим при ремонте бетонных и железобетонных конструкций, а также при строительстве стяжек необходимо чтобы адгезия бетона к бетону была как можно глубокая и надежная.

Основной причиной плохой адгезии бетона к бетону и соответственно причиной образования холодных швов и отслоения является естественный процесс карбонизации бетона.

Свободная известь, как основной источник функционального взаимодействия бетонных слоев практически отсутствует на поверхности «старого» бетона». Под воздействием СО2 окружающего воздуха активная известь переходит в карбонат кальция, представляющий собой инертное вещество, вступающее в реакцию только с кислотными соединениями.

Поэтому свежий бетон, имеющий щелочную реакцию, очень плохо «сцепляется» со старой карбонизованной поверхностью, и если не предпринять адекватных мер со временем образует холодные швы или «отходит».

Общий случай комплекса мероприятий для обеспечения качественной адгезии бетона к бетону

  • Механическая подготовка старой поверхности: шлифование, обеспыливание, удаление жирных пятен и т.п.;
  • Покрытие специальным грунтом;
  • Обработка поверхности специальными композициями «родственными» друг другу химички;
  • Обработка поверхности композициями, обладающими высокой степенью «прилипания»;
  • Применение составов не «родственных» друг к дружке по химическому составу.

Пример комплекса мероприятий для обеспечения высокой адгезии бетона к бетону

  • Нанесение промежуточного адгезионного состава марки ASOCRET-KS/HB на предварительно обработанную поверхность. Обеспечивает необходимый уровень сцепления со старым бетоном;
  • Нанесение ремонтного безусадочного состава обладающего высокой скоростью набора прочности: ASOCRET-RN – до 20 мм адгезии, ASOCRET-GM100 – до 100 мм глубины адгезии;
  • Нанесение финишного раствора ASOCRET-BS2.

Указанные выше материалы имеют цементно-песчаную основу, модифицированную соответствующими присадками. В качестве присадок используются так называемые «сухие полимеры», представляющие собой порошкообразные высокомолекулярные соединения.

При затворении подобных смесей водой, образуется полноценный жидкий полимер, который придает составу требуемое функциональное свойство – обеспечение надежного сцепления (адгезии) бетона к бетону.

Адгезия — это связь между приведенными в контакт разнородными поверхностями. Причины возникновения адгезионной связи — действие межмолекулярных сил или сил химического взаимодействия. Адгезия обусловливает склеивание твердых тел — субстратов — с помощью клеющего вещества — адгезива, а также связь защитного или декоративного лакокрасочного покрытия с основой. Адгезия играет также важную роль в процессе сухого трения. В случае одинаковой природы соприкасающихся поверхностей следует говорить об аутогезии (автогезии), которая лежит в основе многих процессов переработки полимерных материалов. При длительном соприкосновении одинаковых поверхностей и установлении в зоне контакта структуры, характерной для любой точки в объеме тела, прочность аутогезионного соединения приближается к когезионной прочности материала (см. когезия).

На межфазной поверхности двух жидкостей или жидкости и твердого тела адгезия может достигать предельно высокого значения, так как контакт между поверхностями в этом случае полный. Адгезия двух твердых тел из-за неровностей поверхностей и соприкосновения лишь в отдельных точках, как правило, мала.

Что такое адгезия поверхности?

Однако высокая адгезия может быть достигнута и в этом случае, если поверхностные слои контактирующих тел находятся в пластическом или высокоэластичном состоянии и прижаты друг к другу с достаточной силой.

Адгезия жидкости

Адгезия жидкости к жидкости или жидкости к твердому телу. С точки зрения термодинамики причина адгезии — уменьшение свободной энергии на единице поверхности адгезионного шва в изотермически обратимом процессе. Работа обратимого адгезионного отрыва Wa определяется из уравнения: >Wa = σ1 + σ2 — σ12

где σ1 и σ2 — поверхностное натяжение на границе фаз соответственно 1 и 2 с окружающей средой (воздухом), а σ12 — поверхностное натяжение на границе фаз 1 и 2, между которыми имеет место адгезия.

Значение адгезии двух несмешивающихся жидкостей можно найти из уравнения, указанного выше, по легко определяемым значениям σ1, σ2 и σ12. Наоборот, адгезия жидкости к поверхности твердого тела, вследствие невозможности непосредственного определения σ1 твердого тела, может быть рассчитана только косвенным путем по формуле:>Wa = σ2 (1 + cos ϴ)

где σ2 и ϴ — измеряемые величины соответственно поверхностного натяжения жидкости и равновесного краевого угла смачивания, образуемого жидкостью с поверхностью твердого тела. Из-за гистерезиса смачивания, не позволяющего точно определить краевой угол, по этому уравнению обычно получают только весьма приближенные значения. Кроме того, этим уравнением нельзя пользоваться в случае полного смачивания, когда cos ϴ = 1.

Оба уравнения, приложимые в случае, когда хотя бы одна фаза жидкая, совершенно неприменимы для оценки прочности адгезионной связи между двумя твердыми телами, так как в последнем случае разрушение адгезионного соединения сопровождается различного рода необратимыми явлениями, обусловленными различными причинами: неупругими деформациями адгезива и субстрата, образованием в зоне адгезионного шва двойного электрического слоя, разрывом макромолекул, «вытаскиванием» продиффундировавших концов макромолекул одного полимера из слоя другого и др.

Адгезия полимеров

Почти все применяемые в практике адгезивы представляют собою полимерные системы или образуют полимер в результате химических превращений, происходящих после нанесения адгезива на склеиваемые поверхности. К неполимерным адгезивам можно отнести только неорганические вещества типа цементов и припоев.

Методы определения адгезии

  1. Метод одновременного отрыва одной части адгезионного соединения от другой по всей площади контакта;
  2. Метод постепенного расслаивания адгезионного соединения.

Метод отрыва — адгезия

При первом способе разрушающая нагрузка может быть приложена в направлении, перпендикулярном плоскости контакта поверхностей (испытание на отрыв) или параллельном ей (испытание на сдвиг). Отношение силы, преодолеваемой при одновременном отрыве по всей площади контакта, к площади называется адгезионным давлением, давлением прилипания или прочностью адгезионной связи (н/м2, дин/см2, кгс/см2). Метод отрыва дает наиболее прямую и точную характеристику прочности адгезионного соединения, однако применение его связано с некоторыми экспериментальными затруднениями, в частности с необходимостью строго центрированного приложения нагрузки к испытуемому образцу и обеспечения равномерного распределения напряжений по адгезионному шву.

Отношение сил, преодолеваемых при постепенном расслаивании образца, к ширине образца называется сопротивлением отслаиванию или сопротивлением расслаиванию (н/м, дин/см, гс/см); часто адгезию, определяемую при расслаивании, характеризуют работой, которую необходимо затратить на отделение адгезива от субстрата (дж/м2, эрг/см2) (1 дж/м2 = 1 н/м, 1 эрг/см2 = 1 дин/см).

Метод расслаивания — адгезия

Определение адгезии расслаиванием более целесообразно в случае измерения прочности связи между тонкой гибкой пленкой и твердым субстратом, когда в условиях эксплуатации отслаивание пленки идет, как правило, от краев путем медленного углубления трещины. При адгезии двух жестких твердых тел более показателен метод отрыва, т. к. в этом случае при приложении достаточной силы может произойти практически одновременный отрыв по всей площади контакта.

Методы испытаний адгезии

Адгезию и аутогезию при испытании на отрыв, сдвиг и расслаивание можно определять на обычных динамометрах или на специальных адгезиометрах. Для обеспечения полноты контакта адгезива и субстрата адгезив применяют в виде расплава, раствора в летучем растворителе или мономера, который при образовании адгезионного соединения полимеризуется.

Однако при отверждении, высыхании и полимеризации адгезив, как правило, претерпевает усадку, в результате чего на межфазной поверхности возникают тангенциальные напряжения, ослабляющие адгезионное соединение.

Напряжения эти могут быть в значительной мере устранены введением в клей наполнителей, пластификаторов, а в некоторых случаях термообработкой адгезионного соединения.

На определяемую при испытании прочность адгезионной связи существенным образом могут влиять размеры и конструкция испытуемого образца (в результате действия т. н. краевого эффекта), толщина слоя адгезива, предыстория адгезионного соединения и другие факторы. О значениях прочности адгезии или аутогезии, можно говорить, конечно, лишь в случае, когда разрушение происходит по межфазной границе (адгезия) или в плоскости первоначального контакта (аутогезия). При разрушении образца по адгезиву получаемые значения характеризуют когезионную прочность полимера.

Некоторые ученые считают, однако, что возможно только когезионное разрушение адгезионного соединения. Наблюдающийся адгезионный характер разрушения, по их мнению, лишь кажущийся, поскольку визуальное наблюдение или даже наблюдение с помощью оптического микроскопа не позволяет обнаружить на поверхности субстрата остающийся тончайший слой адгезива. Однако в последнее время и теоретически и экспериментально было показа но, что разрушение адгезионного соединения может носить самый разнообразный характер — адгезионный, когезионный, смешанный и микромозаичный.

При таком процессе адгезии осуществляется притяжение разных видов веществ на молекулярном уровне. Ей могут быть подвержены и твердые тела и жидкие.

Определение адгезии

Слово адгезия в переводе с латинского обозначает сцепление. Это процесс, при котором на два вещества притягиваются друг к другу. Их молекулы сцепляются между собой. В результате для того чтобы разъединить два вещества необходимо произвести внешнее воздействие.

Данное является представляет собой поверхностный процесс, который является типичным почти для всех систем дисперсного типа.

Адгезия — это что такое? Адгезия: определение

Данное явление возможно между таким, комбинациями веществ:

  • жидкость +жидкость,
  • твердое тело+твердое тело,
  • жидкое тело + твердое тело.

Все материалы, которые начинают взаимодействовать друг с другом при адгезии, называются субстратами. Вещества, которые обеспечивают субстратам плотное сцепление получили название адгезивов. В большинстве своем все субстраты представлены твердыми материалами, которые могут быть металлами, полимерными материалами, пластмассой, керамическим материалом. Адгезивы представлены преимущественно жидкими веществами. Хорошим примером адгезива является такая жидкость, как клей.

Данный процесс может быть результатом:

  • механического воздействия на материалы для сцепления. В этом случае для того, чтобы вещества скрепились необходимо добавление определенных дополнительных веществ и использование механических методов сцепления.
  • появления взаимосвязи между молекулами веществ.
  • Образования двойного электрического слоя. Такое явление происходит, когда электрический заряд переносится с одного вещества на другое.

В настоящее время не редко встречаются случаи, когда процесс адгезии между веществами появляется в результате влияния смешанных факторов.

Прочность адгезии

Прочность адгезии представляет собой показатель того, как плотно сцепляются между собой те или иные вещества. На сегодняшний день прочность адгезионного взаимодействия двух веществ можно определить, используя три группы специально-выработанных методов:

  1. Методы отрыва. Они подразделяются еще на множество способов определения адгезионной прочности. Для определении степени сцепления двух материалов необходимо постараться, используя внешнюю силу разорвать связь между вещества. В зависимости от скрепленных материалов здесь можно применять метод одновременного отрыва, или метод последовательного отрыва.
  2. Метод фактической адгезии без вмешательства в конструкцию, созданную путем сцепления двух материалов.

При использовании разных методов могут получиться различные показатели, которые зависят во многом от толщины двух материалов. Берется во внимание скорость отслаивания и угол, под которым необходимо осуществлять разъединение.

Адгезия материалов

В современном мире встречаются различные виды адгезии материалов. Сегодня адгезия полимеров является не редким явлением. При смешивании разных веществ очень важно, чтобы их активные центры взаимодействовали друг с другом. На границе взаимодействия двух веществ образуются электрически заряженные частицы, которые обеспечивают прочное соединение материалов.

Адгезия клея представляет собой процесс притяжения двух веществ путем механического взаимодействия из вне. Клей применяется для склеивания двух материалов в целях создания одного предмета. Прочность скрепления материалов зависит от того, какой прочностью обладает клей при соприкосновении с отдельными видами материалов. Для склеивания материалов, которые плохо взаимодействуют друг с другом, необходимо усилить действие клея. Для этого можно просто использовать специальный активатор. Благодаря нему образуется прочная адгезия.

Очень часто в современном мире приходится иметь дело со скреплением таких материалов, как бетон и металлы. Адгезия бетона к металлу является достаточно не прочной. Чаще в строительстве применяются специальные смеси, которые обеспечивают надежное скрепление данных материалов. Также не редко применяется строительная пена, которая заставляет металлы и бетон образовывать устойчивую систему.

Метод адгезии

Методы определения адгезии представляют собой способы, при помощи которых устанавливается то, как различные материалы могут взаимодействовать между собой в пределах определенной специфики. Разные строительные объекты и бытовые приспособления созданы из материалов, которые скреплены между собой. Для того чтобы они функционировали в нормальном режиме и не нанесли вреда необходимо тщательно контролировать уровень адгезии между веществами.

Измерение адгезии осуществляется при помощи специализированных приборов, которые позволяют на производственном этапе определить, как прочно изделия прикрепляются друг к другу после использования тех или иных методов скрепления.

Адгезия лакокрасочных материалов

Адгезия лакокрасочных покрытий представляет собой сцепление краски с различными материалами. Чаще всего встречается адгезии лакокрасочного вещества и металла. Для того чтобы покрыть металлические изделия слоем краски изначально проводятся тесты взаимодействия двух материалов. Учитывается то, каким слоем необходимо нанести лакокрасочное вещество для того, чтобы определить его степень адсорбции. В последующем определяется уровень взаимодействия красящей пленки и материала, которым она покрывается.

Адгезионное свойство

Cтраница 1

Адгезионные свойства характеризуются нормальным напряжением отрыва p двух приведенных во взаимодействие твердых поверхностей. Рост силы адгезии увеличивает интенсивность гранулообразования, однако затрудняет работу с материалом из-за налипания его на стенки аппаратов. При прочих равных условиях / ад существенно зависит от концентрации связующего, причем эта зависимость носит экстремальный характер.  

Адгезионные свойства клеев растительного и животного происхождения неразрывно связаны с их химической природой. Однако выявить непосредственную связь между химической природой адгезива и субстрата при склеивании древесины в ряде случаев затруднительно не только из-за сложности химической природы древесины, но и оттого, что она подвержена более значительным изменениям, чем слой адгезива. Например, в условиях повышенной влажности и высоких температур древесина вследствие разбухания и усушки деформируется. Кроме того, деревянные конструкции и изделия, освещенные солнечным светом, поглощают лучистую энергию и нагреваются до температуры, значительно превышающей температуру окружающего воздуха. Температура в фанерной обшивке самолета, например, может достигать 90 С.  

Адгезионные свойства играют большую роль при функционировании повязок.

С одной стороны, нижний слой повязки должен легко смачиваться, обеспечивая плотное прилегание повязки к ране, с другой, — поверхностная энергия на границе повязка-рана должна быть минимальной, чтобы обеспечить наименьшую травму при ее снятии с раны.  

Адгезионные свойства оказывают иногда решающее влияние на выбор способа и условий изготовления, хранения, применения и транспортировки порошкообразных материалов.  

Адгезионные свойства у различных высокопрочных и нагревостойких эмалей примерно одинаковы и значительно выше, чем у проводов марок ПЭЛ и ПЭЛУ. При испытании закручиванием образцы длиной 50 мм в соответствии с ГОСТ 7262 — 54 должны выдерживать в зависимости от своих размеров не менее 7 — 17 кручений. Фактически при этих испытаниях часто получаются более высокие результаты. Так, провода марки ПЭЛР-2 диаметром 0 55 — 1 20 мм часто выдерживают до 30 — 24 кручений.  

Адгезионные свойства (клейкость) синтетических клеев изучены еще недостаточно, но ученые предполагают, что они зависят по крайней мере от двух основных факторов: гибкости звеньев макромолекулы и наличия в ней полярных групп.  

Адгезионные свойства у различных высокопрочных эмалей примерно одинаковы и значительно выше, чем у проводов марок ПЭЛ и ПЭЛУ. При испытании закручиванием образцы длиной 50 мм в соответствии со стандартом должны выдержать в зависимости от своих размеров не менее 7 — 17 кручений. Фактически при этих испытаниях часто получаются более высокие результаты. Так, при ис — — пытаниях проводов ПЭЛР-2 диаметром 0 55 — 1 20 мм образцы часто выдерживают до 30 — 24 кручений.  

Адгезионные свойства некоторых пленкообразующих материалов находятся в зависимости от их пластических свойств. Так как при затвердевании происходит усадка пленкообразующих материалов, то напряжения, развивающиеся между пленкой и древесиной, могут привести к значительному ослаблению связи покрытия с древесиной — их отставанию, а в хрупких покрытиях — к растрескиванию. Поэтому во многие лакокрасочные материалы вводят пластификаторы, повышающие пластические свойства покрытия. Увеличение толщины лаковой пленки отрицательно сказывается на адгезионных свойствах покрытий вследствие увеличения усадочных напряжений.  

Адгезионные свойства могут проявляться только в монослое частиц, осевших на стенках или фильтрующих поверхностях газоочистных аппаратов, и из-за очень малой толщины такого слоя, как правило, не оказывают влияния на работу систем пыле — и золоулавливания.

Адгезия бетона к бетону: как, что и почему?

Адгезионные свойства парафина наиболее сильно увеличивают атактический полипропилен и окисленный петролатум, при этом их совместное присутствие дает синер-гический эффект.  

Адгезионные свойства пылей характеризуют склонность частиц пыли к слипаемости, которая влияет на эксплуатационные параметры пылеуловителей.  

Адгезионные свойства субстратов могут быть изменены путем прививки. Прививку осуществляют с помощью источников высокой энергии или в электрическом поле.  

Адгезионные свойства битума делают его ценным материалом для производства или крепления многих изделий.  

Страницы:      1    2    3    4

Видов крепления существует множество: сварка, заклепки, соединение с помощью крепежных элементов и так далее. Однако применение клеящего состава остается одним из самых востребованных, так как позволяет соединить поверхности очень разных материалов и без механического воздействия на предметы.

Укладка клея

Одним из основополагающих факторов выбора при этом является высокая адгезия клея.

Что это такое

Склеивание – способ неразъемного соединения каких-либо элементов, за счет формирования адгезионной связки между склеиваемыми поверхностями. Состав, используемый для этого, называется клеем. Вещество может иметь природное или искусственное происхождение, но в любом случае должно обладать определенными свойствами.

Адгезия – свойство, обеспечивающее прочность соединения материалов. После застывания клеящего слоя предметы должны составлять как бы единое целое. Если соединение нельзя разъять, можно говорить о высоких адгезионных свойствах вещества.

Приготовление клеящего состава

Качество это указывает на способность клеевого состава закрепиться на поверхности. Так, металл является веществом низкопористым, что указывает на его низкие адгезионные свойства. Обычный клей, например, на поверхности металла или стекла попросту не удержится.

Адгезия – что это такое в строительстве

Клей с повышенными адгезионными свойствами образует достаточно прочную связь, чтобы соединить гладкие поверхности.

Что такое когезия? Прочность, которую обеспечивает сам клей при застывании. Например, пластилин может временно закрепить собой два предмета, однако под действием веса одного из них материал легко разрушается. Клеевой состав с хорошей когезией обеспечивает прочность связи.

Величина эта относительная, так как зависит от характера и веса склеиваемых предметов. Так, этикетка, прикрепляемая к бутылке, обладает минимальным весом, и чтобы удержать, ее достаточно смеси с довольно низкими когезионными качествами. А вот клей плиточный с адгезий к бетону должен обладать повышенной когезий, поскольку плитка – изделие тяжелое.

Замешивание раствора для плитки

Еще один важный параметр состава – способность сохранять прочность соединения при разных температурах. В быту используются смеси, обеспечивающие схватывание при нормальной температуре, то есть, около 20–30 С. Однако уже в строительных работах, при креплении камня и керамики, при фиксации металлических панелей и кирпича этого недостаточно. Выпускают разные виды изделия, предназначенные для эксплуатации при разных температурах.

Адгезия, когезия, температурный рабочий диапазон продукта регламентируется ГОСТ.

Суть склеивания

Вне зависимости от природы клеящей смеси механизм действия ее одинаков и определяется 2 главными факторами.

Клей с хорошей адгезий – плиточный, для металлических поверхностей и так далее, поступает потребителю в полуготовом виде. Его компоненты смешаны, но не вступили в окончательную реакцию. При приготовлении состава – перемешивание и смешивание сухих компонентов с водой, происходит химическая реакция, и вещество начинает полимеризоваться. При этом пастообразный продукт медленно или быстро переходит в твердое состояние.

В быту этот процесс называется схватыванием или затвердеванием. Известно, что склеивать материалы возможно, только пока смесь находит в полужидком состоянии.

Нанесение клея

Сродство материалов – понятно, что высокой адгезией друг к другу обладают вещества близкие по природе, исключением являются только металлы. И керамическое изделие – плитка, керамогранит, и бетон являются соединениями сложными, в состав их входит довольно много разнообразных компонентов. Если соединяющий их раствор обладает сходным составом, адгезионные свойства его по отношению к этим материалам будут повышенными. Так, для укладки плитки на бетонные и кирпичные основания чаще всего используют составы, включающие цемент.

Как выбрать клей повышенной адгезии для плитки

Учитывать при этом приходиться довольно приличный список факторов:

  • Условия эксплуатации – если речь идет о внешней отделке, то понятно, что керамика будет подвергаться действию низких температур, а, значит, использовать имеет смысл лишь хороший специальный состав, устойчивый на морозе. Если дело касается облицовки камина, ситуация противоположная – нужен материал, выдерживающий действие очень высоких температур.
  • Кроме того, необходимо учитывать и влажность. Для сырого помещения потребуется клей, отличающийся эластичностью. На фото – образцы хороших клеевых смесей.
  • Сродство к основанию – бетон, кирпич, цементно-песчаные связки считаются простым основанием при отделке керамикой, так как, во-первых, сами являются довольно пористыми материалами, а, во-вторых, включают множество компонентов типа цемента, минерального наполнителя и так далее. Для соединения с металлическими или стеклянными поверхностями смеси используются только специализированные, с повышенной адгезий по отношению к низкопористым материалам.

Цементный клей для плитки

Адгезия клея для плитки регламентируется ГОСТ. Если речь идет о пористом варианте, то применяют обычные смеси, даже цементные. Если дело касается низкопористых материалов, требуется особое решение. В эту категорию попадает, например, керамогранит и клинкер, например, так как пористость их очень низка и обычный цементный плиточный состав не удерживает изделие на стене.

ГОСТ 31357-2007

Используется для укладки тяжелых крупноформатных плит и плит среднего формата и веса из мрамора, натурального и искусственного камня при проведении внутренних и наружных работ. Максимальный вес приклеиваемых плит не более 100кг/м2 поверхности.

КЛЕЙ рекомендуется для наружной облицовки оснований, подверженных повышенным эксплуатационным нагрузкам: цоколи, колонны, наружные лестницы, подвалы, во внутренних помещениях с нормальной и повышенной влажностью: для ванных комнат, балконов и террас.

Адгезия покрытий

Идеально подходит для облицовки поверхностей сложных оснований, таких как старые плиточные покрытия, нагреваемые поверхности и пр.

  • Для внутренних и наружных работ
  • Для детских и медицинских учреждений
  • Ударо- и трещиностойкость
  • Применение при облицовке "сложных" оснований
  • Укладка плит методом "сверху-вниз"
  • Использование в системе "Тёплый пол"

Характеристики

Температура работ

Количество воды на 25 кг. сухой смеси

Толщина слоя

Расход при работе шпателем 6Х6

Жизнеспособность раствора

Время укладки плитки

Время корректирования положения плитки

Время твердения

Прочность сцепления с основанием

Удерживаемый вес плитки

Морозостойкость

не менее 35 циклов

Температура эксплуатации

от -50 до +70°С

Упаковка

КЛЕЙ обладает повышенными прочностными характеристиками, что позволяет его использовать при укладке тяжелых плит и эксплуатировать в жестких условиях. Высокая клеящая способность позволяет вести облицовку методом "сверху — вниз".

КЛЕЙ используется на нагреваемых поверхностях (до +70С), в том числе и в системе "Теплый пол".

Пластичность готового раствора делает клей удобным в работе. После набора прочности клей сохраняет свои свойства при прямом контакте с водой и при воздействии отрицательных температур.

КЛЕЙ является экологически безвредным материалом т.к. не выделяет опасных для здоровья человека и окружающей среды веществ при производстве работ и эксплуатации.