Портал о ремонте ванной комнаты. Полезные советы

Основания: классификация и химические свойства. Химическая промышленность: состав, факторы размещения, основные районы и центры

России и включает химическую и нефтехимическую промышленность , подразделяющиеся на многие отрасли и производства, а также микробиологическую промышленность. Он обеспечивает производство кислот, щелочей, минеральных удобрений, разнообразных полимерных материалов, красителей, бытовой химии, лаков и красок, резино-асбестовой, фотохимической и химико-фармацевтической продукции.

Химической и нефтехимической промышленности свойственны черты, сочетание которых делает эти отрасли уникальными по широте хозяйственного использования их продукции. С одной стороны, продукция комплекса находит применение в качестве сырья и материалов во всех отраслях промышленности (медицинской, микробиологической, радиотехнической, космической, деревообрабатывающей, легкой), в сельском хозяйстве и на транспорте. С другой стороны, процесс переработки химического и нефтехимического сырья в конечный продукт включает большое число технологических стадий передела, что определяет большую долю внутриотраслевого потребления.

Объем отгруженных товаров по виду экономической деятельности “Химическое производство” в 2007 г. составил 67% в выпуске обрабатывающих производств. В отрасли работают 7,6 тыс. предприятий, где занято более 500 тыс. человек.

Объем инвестиций в основной капитал химического комплекса за счет всех источников финансирования с 2000 г. возрос в 6,7 раза. Внешние инвестиции за этот период превысили 3,7 млрд. долл., хотя окупаемость крупного химического проекта составляет 13-26 лет.

Сложившееся размещение химического комплекса имеет ряд особенностей:

  • высокую концентрацию предприятий в европейской части России;
  • сосредоточение центров химической промышленности в районах, дефицитных по водным и энергетическим ресурсам, но концентрирующих основную часть населения и производственного потенциала;
  • территориальное несовпадение районов производства и потребления прдукции химической промышленности;
  • сырьевую базу отрасли, котрая дифференцируется в зависимости от природной и экономической специфики отдельных районов страны.

Наиболее важную роль химическая промышленность играет в хозяйстве Поволжья, Волго-Вятского района, Центрального Черноземья, Урала и Центра. Еще большую значимость отрасль имеет в хозяйстве отдельных регионов, где она выступает основой формирования экономики этих территорий — в Новгородской, Тульской, Пермской областях и Татарии.

Продукция химического комплекса России пользуется большим спросом за рубежом . В 2007 г. объем экспорта химической и нефтехимической продукции составил 20,8 млрд. долл. или 5,9% всего экспорта РФ.

Развитие и размещение химического комплекса обусловлено влиянием ряда факторов

Сырьевой фактор оказывает огромное воздействие на размещение всех отраслей химического комплекса, а для горно-химической промышленности и производства калийных удобрений является определяющим. В себестоимости готовой продукции доля сырья по отдельным производствам составляет от 40 до 90%, что обусловлено или высокими нормами расхода, или его ценностью.

Энергетический фактор особенно важен для промышленности полимерных материалов и отдельных отраслей основной химии. Химический комплекс потребляет около 1/5 энергоресурсов, используемых в промышленности. Повышенной электроемкостью отличается производство синтетического каучука, фосфора путем электровозгонки и азотных удобрений методом электролиза воды, а значительными расходами топлива отличается содовая промышленность.

Водный фактор играет особую роль при размещении предприятий химического комплекса, так как вода используется и для вспомогательных целей и в качестве сырья. Расход воды в отраслях химического комплекса варьируется от 50 м3 при производстве хлора до 6000 м3 при производстве химических волокон.

Потребительский фактор учитывают при размещении прежде всего отраслей основной химии — производстве азотных и фосфатных удобрений, серной кислоты, а также узкоспециализированных предприятий, выпускающих лаки, краски, фармацевтические товары.

Трудовой фактор влияет на размещение трудоемких отраслей химического комплекса, к которым относится производство химических волокон, пластмасс.

Экологический фактор до последнего времени недостаточно учитывался при размещении предприятий химического комплекса. Однако именно эта отрасль является одним из основных загрязнителей окружающей среды среди отраслей промышленности (почти 30% объема загрязненных сточных вод промышленности). Поэтому главным и определяющим для дальнейшего развития и размещения отрасли является трансформация традиционных технологий в малоотходные и ресурсосберегающие, создание замкнутых технологических циклов с полным использованием сырья и не вырабатывающих отходов, выходящих за их рамки.

Инфраструктурный фактор , предполагающий подготовку и обустройство территории к промышленному освоению, особенно важен при размещении промышленных предприятий, главным образом в районах нового освоения.

Состав химического комплекса

В составе химического комплекса можно выделить горно-химическую промышленность, связанную с добычей первичного химического сырья, основную химию, обеспечивающую производство минеральных удобрений, серной кислоты и соды, и промышленность полимерных материалов (включая органический синтез).

Горно-химическая промышленность по объему выпускаемой продукции занимает третье место и включает добычу апатитов, фосфоритов, калийной и поваренной соли, самородной серы, бора, мела и др. Запасы химического сырья в России, являющегося сырьем для производства минеральных удобрений, значительны — по ресурсам калийных солей и фосфатного сырья (апатитов и фосфоритов) страна занимает первое место в мире. Основные запасы химического сырья сосредоточены в европейской части страны. В Восточной зоне крупных и рентабельных месторождений пока не выявлено.

В структуре запасов фосфатного сырья преобладают апатитовые руды, где главную роль играет Хибинская группа в Мурманской области. Почти 90% разведанных запасов калийных солей страны сосредоточено в Верхнекамском месторождении в Пермском крае, где полностью осуществляется добыча этого сырья в России. Поваренные соли представлены на территории Поволжья, Урала, Западной и Восточной Сибири, Дальнего Востока, месторождения серы и серного колчедана — на Урале.

Производство удобрений

Основная химия занимает ведущее место в химическом комплексе по объему выпускаемой продукции. Ее главной отраслью является промышленность минеральных удобрений, которая включает производство азотных, фосфатных и калийных удобрений . В структуре выпуска минеральных удобрений примерно одинаковая доля (более 2/5) приходится на калийные и азотные, 1/6 — на фосфатные. В себестоимости производства минеральных удобрений затраты на исходное сырье, природный газ, электроэнергию и транспорт занимают примерно 70-80%.

Территориальная организация производства минеральных удобрений за последнее десятилетие не претерпела каких-либо изменений. По-прежнему более 95% выпуска минеральных удобрений сосредоточено в Западной зоне страны, где еще более усилилось значение Урала (2/5 общероссийского производства) на фоне сокращения роли Центра, Северо-Запада, Поволжья, Волго-Вятского района.

Современная азотная промышленность основывается на синтезе и последующей переработке аммиака, в себестоимости которого почти 50% затрат приходится на природный газ (как сырье и топливо). При этом определяющим в размещении является либо наличие в районе газовых ресурсов (Невинномысск на Северном Кавказе), либо потребителей готовой продукции — сельского хозяйства — и предприятия размещаются вдоль трасс магистральных газопроводов (Новомосковск в Центральном, Новгород в Северо-Западном, Дзержинск в Волго-Вятском районах). При использовании в качестве сырья коксового газа, который образуется при коксовании угля, предприятия по производству азотных удобрений сооружаются либо в угольных бассейнах (Кемерово, Ангарск), либо вблизи металлургических комбинатов полного цикла (Магнитогорск, Нижний Тагил, Липецк, Череповец).

Калийные удобрения производятся на предприятиях горно-химической промышленности, они объединяют добычу и обогащение калийных руд. На базе Верхнекамского месторождения осуществляется выпуск калийных удобрений на двух крупных предприятиях в Соликамске и Березниках в Пермском крае.

Производство фосфатных удобрений основано на кислотной переработке фосфатного сырья (фосфоритов и апатитов) и осуществляется на 19 предприятиях, расположенных почти во всех европейских районах страны, включая Урал. Определяющим в размещении является наличие потребителя, поэтому предприятия построены в основном в сельскохозяйственных районах: Кингисепп (Северо-Запад), Воскресенск, Новомосковск (Центр), Уварово (Центральное Черноземье), Балаково (Поволжье), Красноуральск (Урал).

Сернокислотная промышленность выпускает продукцию, отличающуюся массовым использованием, особенно в производстве фосфатных удобрений. Сернокислотное производство сосредоточено в европейской части страны, главными районами остаются Европейский Север, Урал и Центр, которые обеспечивают почти 2/3 общероссийского выпуска, несколько меньше — 1/5 — дают Поволжье и Северо-Запад.

Отличительной особенностью содовой промышленности является тяготение к сырьевым базам — месторождениям поваренной соли. Производство каустической и кальцинированной соды относится к материалоемким (на выпуск 1 т готовой продукции расходуется до 5 м3 соляного рассола), здесь широко используют вспомогательные материалы (около 1,5 т известняка на 1 т готовой продукции) и топливно-энергетические ресурсы. Ведущими районами сосредоточения содовой промышленности являются Поволжье, Урал, Восточная Сибирь и Волго-Вятский район, на долю которых приходится свыше 9/10 общероссийского производства каустической и кальцинированной соды.

Промышленность полимерных материалов занимает второе место в химическом комплексе по объему выпускаемой продукции и включает органический синтез (производство углеводородного сырья на базе нефте-, газо- и коксохимии), развивающуюся на его основе полимерную химию (производство синтетического каучука, синтетических смол и пластмасс, химических волокон), а также переработку полимерных изделий (производство резинотехнических изделий, шин, изделий из пластических масс).

Развитие и размещение органического синтеза обусловлено значительной и широко распространенной сырьевой базой, снимающей территориальные ограничения для отрасли. Изначально органический синтез опирался на сырье древесного и сельскохозяйственного происхождения, уголь и был представлен в Кузбассе, Подмосковье, на Урале, а также в европейских районах- потребителях готовой продукции. Сейчас определяющим является наличие нефтегазового сырья.

Среди отраслей полимерной химии наибольшими масштабами выделяется промышленность синтетических смол и пластических масс, которая меньше других пострадала в период рыночных преобразований экономики, объем выпуска ее продукции сократился на 1/5. Наличие углеводородного нефтехимического сырья определяет размещение отрасли и производство приближается к нефтехимическим комбинатам, расположенным в районах добычи нефти или по трассам нефтегазотрубопроводов.

Ожидаемых сдвигов в размещении отрасли в Восточную зону не произошло. За последние 15 лет доля восточных районов в общероссийском выпуске синтетических смол и пластмасс сократилась с 31 до 26% и возросла роль Поволжья (Новокуйбышевск, Волгоград, Волжский, Казань) и Урала (Уфа, Салават, Екатеринбург, Нижний Тагил), которые в 2007 г. обеспечивали производство более 2/5 готовой продукции отрасли. Стабильной остается ситуация в крупнейшем районе потребления — Центральном, где действуют крупные предприятия в Москве, Рязани, Ярославле.

Промышленность химических волокон и нитей по объему выпускаемой продукции полимерной химии занимает второе место и включает производство искусственных (из целлюлозы) и синтетических волокон (из продуктов нефтепереработки).

Промышленность химических волокон и нитей характеризуется высокими нормами расхода сырья, воды, топлива и энергии и ориентируется на районы текстильной промышленности — Центральный (Тверь, Шуя, Клин, Серпухов), Поволжский (Балаково, Саратов, Энгельс). На востоке крупные предприятия действуют в Красноярске, Барнауле, Кемерово.

Промышленность синтетического каучука занимает особое место, так как первые в мире предприятия на базе пищевого сырья были построены еще в начале 1930-х г. ХХ в. в Центральной России. Переход на углеводородное сырье обусловил строительство новых заводов в Поволжье, на Урале, в Западной Сибири.

Помимо высокой материалоемкости отрасль отличается значительной электроемкостью (почти 3 тыс. кВт/ч на 1 т синтетического каучука) и характеризуется известной территориальной рассредоточенностью. Почти 2/3 производства синтетического каучука приходится на европейскую часть, где ведущим районом остается Поволжье (Казань, Тольятти, Нижнекамск). Значительны объемы производства в Центральном (Москва, Ярославль), Центрально-Черноземном (Воронеж) и Уральском (Уфа, Стерлитамак, Пермь) районах. На востоке крупными производителями синтетического каучука остаются Омск (Западная Сибирь) и Красноярск (Восточная Сибирь).

Учитывая ресурсную обеспеченность отдельных территорий и возможности перерабатывающей промышленности крупными комплексами химической промышленности отличаются следующие экономические районы России:
  • Центр, где преобладает полимерная химия (выпуск синтетического каучука, пластмасс, химических волокон), выделяется производство азотных и фосфорных удобрений, серной кислоты, красителей и лаков;
  • Урал, где выпускают все виды минеральных удобрений, соду, серную кислоту, а также синтетический спирт, синтетический каучук, пластмассы из нефти и попутных газов;
  • Северо-Запад поставляет на общероссийский рынок фосфорные удобрения, серную кислоту, продукты полимерной химии (синтетические смолы, пластмассы, химические волокна);
  • Поволжье обеспечивает выпуск разнообразной полимерной продукции на основе органического синтеза (синтетический каучук, химические волокна);
  • Северный Кавказ развивает производство азотных удобрений, органического синтеза, синтетических смол и пластмасс;
  • Сибирь (Западная и Восточная) характеризуется развитием химии органического синтеза и полимерной химии, выпуском азотных удобрений.

Химическая промышленность - одна из важнейших отраслей мирового хозяйства, благодаря которой обеспечивается полноценная работа черной и цветной металлургии, строительства, сельского хозяйства, фармацевтики, пищевой промышленности. В современном мире значение химической промышленности очень велико, поскольку ее достижения существенно облегчают жизнь людей.

Общая характеристика

Химическая промышленность основана на переработке сырья химическими способами. Базовыми материалами, которые используются в этой отрасли, является нефть и различное минеральное сырье. Благодаря ей у людей появилась возможность использовать в своем быту пластиковые и пластмассовые изделия, удобрения для сельского хозяйства, лекарственные препараты, бытовую химию и косметику, и многое другое.

Рис. 1. Бытовая химия.

Многие отрасли промышленности нуждаются в химической продукции, благодаря которой происходит активное развитие индустрии. Особое значение химическая промышленность имеет для сельского хозяйства, автомобилестроения и строительства.

Началом развития химической отрасли принято считать начало 17 века, когда произошел промышленный переворот. До этого химия - «наука о веществах» – развивалась крайне медленно, и лишь когда люди научились применять свои знания на практике, все изменилось. Самым первым продуктом химической промышленности стала серная кислота, которая и сейчас остается важнейшим компонентом в химической индустрии.

Рис. 2. Серная кислота.

Для данной отрасли характерны следующие черты:

  • Использование большого количества сырья для изготовления продукции. Это особенно касается каучука, пластмассы, соды, удобрений.
  • Материалы химической промышленности отличаются большим разнообразием.
  • Высокий уровень энергетических расходов.
  • Невысокая трудоемкость в сочетании с потребностью в высококвалифицированных специалистах.
  • Большие капиталовложения. Работа химических предприятий невозможна без сложных конструкций и механизмов.
  • Сложная отраслевая структура.
  • Проблемы экологического характера, связанные с изготовлением химической продукции.

Отрасли химической промышленности

В состав мировой химической промышленности входит множество различных сфер. В настоящее время существует более двухсот различных подотраслей и производств, а ассортимент ее продукции достигает одного миллиона видов.

ТОП-4 статьи которые читают вместе с этой

Основными отраслями химической промышленности являются:

  • Горнохимическая - добыча, переработка и обогащение серы, фосфоритов и различных солей.
  • Базовая - производство неорганических веществ (удобрения, кислоты, сода).
  • Промышленность полимерных материалов - основана на органическом синтезе и включает в себя производства по изготовлению и переработке различных полимеров (пластмасса, смола, каучук).

В эпоху научно-технической революции наибольшее развитие в химической промышленности получило производство полимерных материалов. В качестве сырья для этой продукции используются полуфабрикаты нефтехимии. Полимеры являются важнейшей составляющей частью промышленности и строительства.

Рис. 3. Производство пластмассы.

Сохранение экологии

Активное развитие химической промышленности привело к строительству большого количества производств в крупных и средних населенных пунктах во всем мире.

Вместе с тем лишь малое количество предприятий оснащено малоотходными или полностью безотходными технологиями, современными очистительными сооружениями. Все это привело к возникновению сложной экологической обстановки, особенно в развивающихся странах, где уделяется мало внимания защите окружающей среды.

Для улучшения экологической обстановки в технологические процессы химической промышленности необходимо своевременно внедрять следующие методики :

  • восстановление и окисление с использованием кислорода и азота;
  • мембранная технология, благодаря которой происходит разделение газовых смесей и от жидкости;
  • биотехнология;
  • электрохимические методы.

Что мы узнали?

При изучении темы «Химическая промышленность» мы узнали, насколько большое влияние оказывается химическая индустрия на развитие многих важных отраслей промышленности. Мы выяснили, какие основные черты ей присущи, из каких отраслей она состоит.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 160.

Недавно мы с друзьями смотрели довольно интересный фильм. В нем рассказывалось о нашем будущем, о том, что будет с жизнью людей. Вообще, как я поняла жанр этого фильма, был фантастика. И в одной из сцен говорилось о возрастании химической промышленности, и о том что вскоре мы не сможем полноценно жить, из-за того что весь мир будет окутан химическими материалами. Все, конечно, посмеялись и пустили этот момент вскользь, но я задумалась, что ведь действительно химическая промышленность постепенно продвигается на первый план, вытесняя другие сферы деятельности, и это меня немного насторожило. Я решила во всем разобраться и теперь хочу рассказать и вам.

Что такое химическая промышленность

Химическая промышленность – исключительная деятельность в экономике , основой которой служит процесс химизации , т.е. использования химических способов, материалов и процессов в различные отрасли сфер хозяйства.

Она выделяется непростой организацией, включающей данные отрасли:

  • добычу горно-химического сырья;
  • основную химию;
  • химию полимеров (органический синтез).

Даже по объяснению данного термина я уже сделала вывод о значимости данной промышленности, и эта значимость бесконечно огромна. Ведь химическая промышленность включает возможность потребления сырья и утилизацию почти всех отходов производства, даже самых токсичных. На мой взгляд, это очень весомый аргумент о роли данной деятельности в промышленном мире. Ни одна отрасль не может сравниться с хим. промышленностью в производстве фактически новых материалов с заранее заданными свойствами.


Факторы размещения предприятий химической промышленности

В основном к факторам размещения относится:

  • сырьевой фактор;
  • потребительский фактор;
  • потребительски-сырьевой фактор.

Специфика размещения данных производств в России – концентрация в европейской части страны. Эту особенность обуславливает несколько причин. Среди главных – близость потребителя и наличие сырья (потребительски-сырьевой фактор ).


Примеры размещения

В основном, конечно добычу сырья можно отнести к сырьевому фактору. К примеру, горно-химические предприятия располагаются в Березниках и Соликамске, потому что здесь находится одно из крупнейших месторождений калийных солей. Фосфорные удобрения вырабатывают из апатитов, добываемых в Хибинах.Тем не менее, самым важным фактором химических предприятий является потребительский фактор . Практически все центры расположены в крупных городах. Например, какое либо предприятие удобней построить в Санкт-Петербурге, где проживает много людей и есть спрос, нежели чем в провинциальном городке с небольшим населением.

Неорганические вещества бывают простыми и сложными. Простые вещества делятся на металлы (K, Na, Li) и неметаллы (O, Cl, P). Сложные вещества делят на оксиды, гидроксиды (основания), соли и кислоты.

Оксиды

Оксиды - соединения химического элемента (металла или неметалла) с кислородом (степень окисления -2), при этом кислород связан с менее электроотрицательным элементом.

Выделяют:

1. Кислотные оксиды - оксиды, проявляющие кислотные свойства. Образованы неметаллами и кислородом. Примеры: SO3, SO2, CO2, P2O5, N2O5.

2. Амфотерные оксиды - оксиды, которые могут проявлять как основные, так и кислотные свойства (такое свойство называется амфотерность). Примеры: Al2O3, CrO3, ZnO, BeO, PbO.

3. Основные оксиды - оксиды металлов, при этом металлы проявляют степень окисления +1 или +2. Примеры: K2O, MgO, CaO, BaO, Li2O, Na2O.

4. Несолеобразующие оксиды - практически не вступают в реакции, не имеют соответствующих кислот и гидроксидов. Примеры: CO, NO.

Химические свойства основных оксидов

1. Взаимодействие с водой

В реакцию вступают только оксиды щелочных и щелочноземельных металлов, гидроксиды которых образуют растворимое основание

основной оксид + вода → щелочь

K2O + H2O → 2KOH

CaO + H2O → Ca(OH)2

2. Взаимодействие с кислотой

основной оксид + кислота → соль + вода

MgO + H2SO4 → MgSO4 + H2O

Na2O + H2S(изб) → 2NaHS + H2O

MgO(изб) + HCl → Mg(OH)Cl

3. Взаимодействие с кислотными или амфотерными оксидами

основной оксид + кислотный/амфотерный оксид → соль

При этом металл, находящийся в основном оксиде, становится катионом, а кислотный/амфотерный оксид становится анионом (кислотным остатком). Реакции между твердыми оксидами идут при нагревании. Нерастворимые в воде основные оксиды не взаимодействуют с газообразными кислотными оксидами.

BaO + SiO2 (t)→ BaSiO3

K2O + ZnO (t)→ K2ZnO2

FeO + CO2 ≠

4. Взаимодействие с амфотерными гидроксидами

основной оксид + амфотерный гидроксид → соль + вода

Na2O + 2Al(OH)3 (t)→ 2NaAlO2 + 3H2O

5. Разложение при температуре оксидов благородных металлов и ртути

2Ag2O (t)→ 4Ag + O2

2HgO (t)→ 2Hg + O2

6. Взаимодействие с углеродом (С) или водородом (Н2) при высокой температуре.

При восстановлении таким образом оксидов щелочных, щелочноземельных металлов и алюминия выделяется не сам металл, а его карбид.

FeO + C (t)→ Fe + CO

3Fe2O3 + C (t)→ 2Fe3O4 + CO

CaO + 3C (t)→ CaC2 + CO

CaO + 2H2 (t)→ CaH2 + H2O

7. Активные металлы восстанавливают менее активные из их оксидов при высокой температуре

CuO + Zn (t)→ ZnO + Cu

8. Кислород окисляет низшие оксиды в высшие.

Оксиды щелочных и щелочноземельных металлов переходят в пероксиды

4FeO + O2 (t)→ 2Fe2O3

2BaO + O2 (t)→ 2BaO2

2NaO + O2 (t)→ 2Na2O2

Химические свойства кислотных оксидов

1. Взаимодействие с водой

кислотный оксид + вода → кислота

SO3+ H2O → H2SO4

SiO2 + H2O ≠

У некоторых оксидов нет соответствующих кислот, в таком случае происходит реакция диспропорционирования

2NO2 + H2O → HNO3 + HNO2

3NO2 + H2O (t)→ 2HNO3 + NO

2ClO2 + H2O → HClO3 + HClO2

6ClO2 + 3H2O (t)→ 5HClO3 + HCl

В зависимости от количества присоединенных к P2O5 молекул воды образуются три разных кислоты - метафосфорная НРО3, пирофосфорная Н4Р2О7 или ортофосфорная Н3РО4.

P2O5 + H2O → 2HPO3

P2O5 + 2H2O → H4P2O7

P2O5 + 3H2O → 2H3PO4

Оксид хрома соответствует двум кислотам - хромовой H2CrO4 и дихромовой H2Cr2O7(III)

CrO3 + H2O → H2CrO4

2CrO3 + H2O → H2Cr2O7

2. Взаимодействие с основаниями

кислотный оксид + основание → соль + вода

Нерастворимые кислотные оксиды реагируют только при сплавлении, а растворимые - в обычных условиях.

SiO2 + 2NaOH (t)→ Na2SiO3 + H2O

При избытке оксида образуется кислая соль.

CO2(изб) + NaOH → NaHCO3

P2O5(изб) + 2Ca(OH)2 → 2CaHPO4 + H2O

P2O5(изб) + Ca(OH)2 + H2O → Ca(H2PO4)2

При избытке основания образуется основная соль

CO2 + 2Mg(OH)2(изб) → (MgOH)2CO3 + H2O

Оксиды, которые не имеют соответствующих кислот, вступают в реакцию диспропорционирования и образуют при этом две соли.

2NO2 + 2NaOH → NaNO3 + NaNO2 + H2O

2ClO2 + 2NaOH → NaClO3 + NaClO2 + H2O

CO2 реагирует с некоторыми амфотерными гидроксидами (Be(OH)2, Zn(OH)2, Pb(OH)2, Cu(OH)2), при этом образуется основная соль и вода.

CO2 + 2Be(OH)2 → (BeOH)2CO3↓ + H2O

CO2 + 2Cu(OH)2 → (CuOH)2CO3↓ + H2O

3. Взаимодействие с основным или амфотерным оксидом

кислотный оксид + основной/амфотерный оксид → соль

Реакции между твердыми оксидами идут при сплавлении. Амфотерные и нерастворимые в воде основные оксиды взаимодействуют только с твердыми и жидкими кислотными оксидами.

SiO2 + BaO (t)→ BaSiO3

3SO3 + Al2O3 (t)→ Al2(SO4)3

4. Взаимодействие с солью

кислотный нелетучий оксид + соль (t)→ соль + кислотный летучий оксид

SiO2 + CaCO3 (t)→ CaSiO3 + CO2

P2O5 + Na2CO3 → 2Na3PO4 + 2CO2

5. Кислотные оксиды не взаимодействуют с кислотами, но Р2О5 реагирует с безводными кислородсодержащими кислотами.

При этом образуется НРО3 и ангидрид соответствующей кислоты

P2O5 + 2HClO4(безводн) → Cl2O7 + 2HPO3

P2O5 + 2HNO3(безводн) → N2O5 + 2HPO3

6. Вступают в окислительно-восстановительные реакции.

1. Восстановление

При высокой температуре некоторые неметаллы могут восстанавливать оксиды.

CO2 + C (t)→ 2CO

SO3 + C → SO2 + CO

H2O + C (t)→ H2 + CO

Для восстановления неметаллов из их оксидов часто используют магнийтермию.

CO2 + 2Mg → C + 2MgO

SiO2 + 2Mg (t)→ Si + 2MgO

N2O + Mg (t)→ N2 + MgO

2. Низшие оксиды превращаются в высшие при взаимодействии с озоном (или кислородом) при высокой температуре в присутствии катализатора

NO + O3 → NO2 + O2

SO2 + O3 → SO3 + O2

2NO2 + O3 → N2O5 + O2

2CO + O2 (t)→ 2CO2

2SO2 + O2 (t, kat)→ 2SO3

P2O3 + O2 (t)→ P2O5

2NO + O2 (t)→ 2NO2

2N2O3 + O2 (t)→ 2N2O4

3. Оксиды вступают и в другие окислительно-восстановительные реакции

SO2 + NO2 → NO + SO3 4NO2 + O2 + 2H2O → 4HNO3

2SO2 + 2NO → N2 + 2SO3 2N2O5 → 4NO2 + O2

SO2 + 2H2S → 3S↓ + 2H2O 2NO2 (t)→ 2NO + O2

2SO2 + O2 + 2H2O → 2H2SO4 3N2O + 2NH3 → 4N2 + 3H2O

2CO2 + 2Na2O2 → 2Na2CO3 + O2 10NO2 +8P → 5N2 + 4P2O5

N2O + 2Cu (t)→ N2 + Cu2O

2NO + 4Cu (t)→ N2 + 2Cu2O

N2O3 + 3Cu (t)→ N2 + 3CuO

2NO2 + 4Cu (t)→ N2 + 4CuO

N2O5 + 5Cu (t)→ N2 + 5CuO

Химические свойства амфотерных оксидов

1. Не взаимодействуют с водой

амфотерный оксид + вода ≠

2. Взаимодействие с кислотами

амфотерный оксид + кислота → соль + вода

Al2O3 + 3H2SO4 → Al2(SO4)3 + 3H2O

При избытке многоосновной кислоты образуется кислая соль

Al2O3 + 6H3PO4(изб) → 2Al(H2PO4)3 + 3H2O

При избытке оксида образуется основная соль

ZnO(изб) + HCl → Zn(OH)Cl

Двойные оксиды образуют две соли

Fe3O4 + 8HCl → FeCl2 + 2FeCl3 + 4H2O

3. Взаимодействие с кислотным оксидом

амфотерный оксид + кислотный оксид → соль

Al2O3 + 3SO3 → Al2(SO4)3

4. Взаимодействие с щелочью

амфотерный оксид + щелочь → соль + вода

При сплавлении образуется средняя соль и вода, а в растворе - комплексная соль

ZnO + 2NaOH(тв) (t)→ Na2ZnO2 + H2O

ZnO + 2NaOH + H2O → Na2

5. Взаимодействие с основным оксидом

амфотерный оксид + основной оксид (t)→ соль

ZnO + K2O (t)→ K2ZnO2

6. Взаимодействие с солями

амфотерный оксид + соль (t)→ соль + летучий кислотный оксид

Амфотерные оксиды вытесняют при сплавлении летучие кислотные оксиды из их солей

Al2O3 + K2CO3 (t)→ KAlO2 + CO2

Fe2O3 + Na2CO3 (t)→ 2NaFeO2 + CO2

Химические свойства оснований

Основания - вещества, в состав которых входит катион металла и гидроксид-анион. Основания бывают растворимыми (щелочи - NaOH, KOH, Ba(OH)2) и нерастворимыми (Al2O3, Mg(OH)2).

1. Растворимое основание + индикатор → изменение цвета

При добавлении индикатора в раствор основания его цвет меняется:

Бесцветный фенолфталеин - малиновый

Фиолетовый лакмус - синий

Метилоранж - желтый

2. Взаимодействие с кислотой (реакция нейтрализации)

основание + кислота → соль + вода

По реакции могут быть получены средние, кислые или основные соли. При избытке многоосновной кислоты образуется кислая соль, при избытке многокислотного основания - основная соль.

Mg(OH)2 + H2SO4 → MGSO4 + 2H2O

Mg(OH)2 + 2H2SO4 → MG(HSO4)2 + 2H2O

2Mg(OH)2 + H2SO4 → (MgOH)2SO4 + 2H2O

3. Взаимодействие с кислотными оксидами

основание + кислотный оксид → соль + вода

6NH4OH + P2O5 → 2(NH4)3PO4 + 3H2O

4. Взаимодействие щелочи с амфотерным гидроксидом

щелочь + амфотерный гидроксид → соль + вода

В данной реакции амфотерный гидроксид проявляет кислотные свойства. При реакции в расплаве получается средняя соль и вода, а в растворе - комплексная соль. Гидроксиды железа (III) и хрома (III) растворяются только в концентрированных растворах щелочей.

2KOH(тв) + Zn(OH)2 (t)→ K2ZnO2 + 2H2O

KOH + Al(OH)3 → K

3NaOH(конц) + Fe(OH)3 → Na3

5. Взаимодействие с амфотерным оксидом

щелочь + амфотерный оксид → соль + вода

2NaOH(тв) + Al2O3 (t)→ 2NaAlO2 + H2O

6NaOH + Al2O3 + 3H2O → 2Na3

6. Взаимодействие с солью

Между основанием и солью происходит реакция ионного обмена. Она идет только при выпадении осадка или при выделении газа (при образовании NH4OH).

А. Взаимодействие растворимого основания и растворимой кислой соли

растворимое основание + растворимая кислая соль → средняя соль + вода

Если соль и основание образованы разными катионами, то образуются две средние соли. В случае кислых солей аммония избыток щелочи приводит к образованию гидроксида аммония.

Ba(OH)2 + Ba(HCO3)2 → 2BaCO3↓ + 2H2O

2NaOH(изб) + NH4HS → Na2S + NH4OH + H2O

Б. Взаимодействие растворимого основания с растворимой средней или основной солью.

Возможно несколько вариантов развития событий

растворимое основание + растворимая средняя/основная соль → нерастворимая соль↓ + основание

→ соль + нерастворимое основание↓

→ соль + слабый электролит NH4OH

→ реакция не идет

Реакции идут между растворимыми основаниями и средней солью только в том случае, если в результате образуется нерастворимая соль, или нерастворимое основание, или слабый электролит NH4OH

NaOH + KCl ≠ реакция не идет

Если исходная соль образована многокислотным основанием, при недостатке щелочи образуется основная соль

При действии щелочей на соли серебра и ртути (II) выделяются не их гидроксиды, которые растворяются при 25С, а нерастворимые оксиды Ag2O и HgO.

7. Разложение при температуре

основный гидроксид (t)→ оксид + вода

Ca(OH)2 (t)→ CaO + H2O

NaOH (t)≠

Некоторые основания (AgOH, Hg(OH)2 и NH4OH) разлагаются даже при комнатной температуре

LiOH (t)→ Li2O + H2O

NH4OH (25C)→ NH3 + H2O

8. Взаимодействие щелочи и переходного металла

щелочь + переходный металл → соль + Н2

2Al + 2KOH + 6H2O → 2K +3H2

Zn + 2NaOH(тв) (t)→ Na2ZnO2 + H2

Zn + 2NaOH + 2H2O → Na2 + H2

9. Взаимодействие с неметаллами

Щелочи взаимодействуют с некоторыми неметаллами - Si, S, P, F2, Cl2, Br2, I2. При этом часто в результате диспропорционирования образуются две соли.

Si + 2KOH + H2O → K2SiO3 + 2H2

3S + 6KOH (t)→ 2K2S + K2SO3 + 3H2O

Cl2 +2KOH(конц) → KCl + KClO + H2O (для Br, I)

3Cl2 + 6KOH(конц) (t)→ 5KCl + KClO3 +3H2O (для Br, I)

Cl2 + Ca(OH)2 → CaOCl2 + H2O

4F2 + 6NaOH(разб) → 6NaF + OF2 + O2 + 3H2O

4P + 3NaOH + 3H2O → 3NaH2PO2 + PH3

Гидроксиды, обладающие восстановительными свойствами, способны окисляться кислородом

4Fe(OH)2 + O2 + 2H2O → 4Fe(OH)3 (=Cr)

Химические свойства кислот

1. Изменение цвета индикатора

растворимая кислота + индикатор → изменение цвета

Фиолетовый лакмус и метилоранж окрашиваются в красный, фенолфталеин становится прозрачным

2. Взаимодействие с основаниями (реакция нейтрализации)

кислота + основание → соль + вода

H2SO4 + Mg(OH)2 → MgSO4 + 2H2O

3. Взаимодействие с основным оксидом

кислота + основный оксид → соль + вода

2HCl + CuO → CuCl2 + H2O

4. Взаимодействие с амфотерными гидроксидами с образованием средних, кислых или основных солей

кислота + амфотерный гидроксид → соль + вода

2HCl + Be(OH)2 → BeCl2 + 2H2O

H3PO4() + Zn(OH)2 → ZNHPO4 + 2H2O

HCl + Al(OH)3() → Al(OH)2Cl + H2O

5. Взаимодействие с амфотерными оксидами

кислота + амфотерный оксид → соль + вода

H2SO4 + ZnO → ZnSO4 + H2O

6. Взаимодействие с солями

Общая схема реакции: кислота + соль → соль + кислота

Происходит реакция ионного обмена, которая идет до конца только в случае образования газа или выпадения осадка.

Например: HCl + AgNO3 → AgCl↓ + HNO3

2HBr + K2SiO3 → 2KBr + H2SiO3↓

А. Взаимодействие с солью более летучей или слабой кислоты с образованием газа

HCl + NaHS → NaCl + H2S

Б. Взаимодействие сильной кислоты и соли сильной или средней кислоты с образованием нерастворимой соли

сильная кислота + соль сильной/средней кислоты → нерастворимая соль + кислота

Нелетучая ортофосфорная кислота вытесняет сильные, но летучие соляную и азотную кислоты из их солей при условии образования нерастворимой соли

В. Взаимодействие кислоты с основной солью этой же кислоты

кислота1 + основная соль кислоты1 → средняя соль + вода

HCl + Mg(OH)Cl → MgCl2 + H2O

Г. Взаимодействие многоосновной кислоты с средней или кислой солью этой же кислоты с образованием кислой соли этой же кислоты, содержащей большее число атомов водорода

многоосновная кислота1 + средняя/кислая соль кислоты1 → кислая соль кислоты1

H3PO4 + Ca3(PO4)2 → 3CaHPO4

H3PO4 + CaHPO4 → Ca(H2PO4)2

Д. Взаимодействие сероводородной кислоты с солями Ag, Cu, Pb, Cd, Hg с образованием нерастворимого сульфида

кислота H2S + соль Ag, Cu, Pb, Cd, Hg → Ag2S/CuS/PbS/CdS/HgS↓ + кислота

H2S + CuSO4 → CuS↓ + H2SO4

Е. Взаимодействие кислоты со средней или комплексной солью с амфотерным металлом в анионе

а) в случае недостатка кислоты образуется средняя соль и амфотерный гидроксид

кислота + средняя/комплексная соль в амфотерным металлом в анионе → средняя соль + амфотерный гидроксид

б) в случае избытка кислоты образуются две средние соли и вода

кислота + средняя/комплексная соль с амфотерным металлом в анионе → средняя соль + средняя соль + вода

Ж. В некоторых случаях кислоты с солями вступают в окислительно-восстановительные реакции или реакции комплексообразования:

H2SO4(конц) и I‾/Br‾ (продукты H2S и I2/SO2 и Br2)

H2SO4(конц) и Fe² + (продукты SO2 и Fe³ +)

HNO3 разб/конц и Fe² + (продукты NO/NO2 и Fe³ +)

HNO3 разб/конц и SO3²‾/S²‾ (продукты NO/NO2 и SO4²‾/S или SO4²‾)

HClконц и KMnO4/K2Cr2O7/KClO3 (продукты Cl2 и Mn² + /Cr² + /Cl‾)

3. Взаимодействие концентрированной серной кислоты с твердой солью

Нелетучие кислоты могут вытеснять летучие из их твердых солей

7. Взаимодействие кислоты с металлом

А. Взаимодействие кислоты с металлами, стоящими в ряду до или после водорода

кислота + металл до Н2 → сель металла в минимальной степени окисления + Н2

Fe + H2SO4(разб) → FeSO4 + H2

кислота + металл после Н2 ≠ реакция не идет

Cu + H2SO4(разб) ≠

Б. Взаимодействие концентрированной серной кислоты с металлами

H2SO4(конц) + Au, Pt, Ir, Rh, Ta ≠ реакция не идет

H2SO4(конц) + щелочной/щелочноземельный металл и Mg/Zn → H2S/S/SO2 (в зависимости от условий) + сульфат металла в максимальной степени окисления + Н2О

Zn + 2H2SO4(конц) (t1)→ ZnSO4 + SO2 + 2H2O

3Zn + 4H2SO4(конц) (t2>t1)→ 3ZnSO4 + S↓ + 4H2O

4Zn + 5H2SO4(конц) (t3>t2)→ 4ZnSO4 + H2S + 4H2O

H2SO4(конц) + остальные металлы → SO2 + сульфат металла в максимальной степени окисления + H2O

Cu + 2H2SO4(конц) (t)→ CuSO4 + SO2 + 2H2O

2Al + 6H2SO4(конц) (t)→ Al2(SO4)3 + 3SO2 + 6H2O

В. Взаимодействие концентрированной азотной кислоты с металлами

HNO3(конц) + Au, Pt, Ir, Rh, Ta, Os ≠ реакция не идет

HNO3(конц) + Pt ≠

HNO3(конц) + металл щелочной/щелочноземельный → N2O + нитрат металла в максимальной степени окисления + H2O

4Ba + 10HNO3(конц) → 4Ba(NO3)2 + N2O + 5H2O

HNO3(конц) + остальные металлы при температуре → NO2 + нитрат металла в максbмальной степени окисления + H2O

Ag + 2HNO3(конц) → AgNO3 + NO2 + H2O

С Fe, Co, Ni, Cr и Al взаимодействует только при нагревании, так как при обычных условиях эти металлы азотной кислотой пассивируются - становятся химически стойкими

Г. Взаимодействие разбавленной азотной кислоты с металлами

HNO3(разб) + Au, Pt, Ir, Rh, Ta ≠ реакция не идет

Очень пассивные металлы (Au, Pt) могут быть растворены царской водкой - смесью одного объема концентрированной азотной кислоты с тремя объемами концентрированной соляной кислоты. Окислителем в ней является атомарный хлор, отщепляющийся от хлорида нитрозила, который образуется в результате реакции: HNO3 + 3HCl → 2H2O + NOCl + Cl2

HNO3(разб) + металл щелочной/щелочноземельный → NH3(NH4NO3) + нитрат металла в максимальной степени окисления + H2O

NH3 превращается в NH4NO3 в избытке азотной кислоты

4Ca + 10HNO3(разб) → 4Ca(NO3)2 + NH4NO3 + 3H2O

HNO3(разб) + металл в ряду напряжений до Н2 → NO/N2O/N2/NH3 (в зависимости от условий) + нитрат металла в максимальной степени окисления + Н2О

С остальными металлами, стоящими в ряду напряжений до водорода и неметаллами, HNO3(разб) образует соль, воду и, в основном NO, но, может, в зависимости от условий и N2O, и N2, и NH3/NH4NO3 (чем больше разбавлена кислота, тем ниже степень окисления азота в выделяющемся газообразной продукте)

3Zn + 8HNO3(разб) → 3Zn(NO3)2 + 2NO + 4H2O

4Zn + 10HNO3(разб) → 4Zn(NO3)2 + N2O + 5H2O

5Zn + 12HNO3(разб) → 5Zn(NO3)2 + N2 + 6H2O

4Zn + 10HNO3(оч.разб) → 4Zn(NO3)2 + NH4NO3 + 3H2O

HNO3(разб) + металл после Н2 → NO + нитрат металла в максимальной степени окисления + H2O

С малоактивными металлами, стоящими после Н2, HNO3разб образует соль, воду и NO

3Cu + 8HNO3(разб) → 3Cu(NO3)2 + 2NO + 4H2O

8. Разложение кислот при температуре

кислота (t)→ оксид + вода

H2CO3 (t)→ CO2 + H2O

H2SO3 (t)→ SO2 + H2O

H2SiO3 (t)→ SiO2 + H2O

2H3PO4 (t)→ H4P2O7 + H2O

H4P2O7 (t)→ 2HPO3 + H2O

4HNO3 (t)→ 4NO2 + O2 + 2H2O

3HNO2 (t)→ HNO3 + 2NO + H2O

2HNO2 (t)→ NO2 + NO + H2O

3HCl (t)→ 2HCl + HClO3

4H3PO3 (t)→ 3H3PO4 + PH3

9. Взаимодействие кислоты с неметаллами (окислительно-восстановительная реакция). При этом неметалл окисляется до соответствующей кислоты, а кислота восстанавливается до газообразного оксида: H2SO4(конц) - до SO2; HNO3(конц) - до NO2; HNO3(разб) - до NO.

S + 2HNO3(разб) → H2SO4 + 2NO

S + 6HNO3(конц) → H2SO4 + 6NO2 + 2H2O

S + 2H2SO4(конц) → 3SO2 + CO2 + 2H2O

C + 2H2SO4(конц) → 2SO2 + CO2 + 2H2O

C + 4HNO3(конц) → 4NO2 + CO2 + 2H2O

P + 5HNO3(разб) + 2H2O → 3H3PO4 + 5NO

P + 5HNO3(конц) → HPO3 + 5NO2 + 2H2O

H2S + Г2 → 2HГ + S↓ (кроме F2)

H2SO3 + Г2 + H2O → 2HГ + H2SO4 (кроме F2)

2H2S(водн) + O2 → 2H2O + 2S↓

2H2S + 3O2 → 2H2O + 2SO2 (горение)

2H2S + O2(недост) → 2H2O + 2S↓

Более активные галогены вытесняют менее активные из кислот НГ (исключение: F2 реагирует с водой, а не с кислотой)

2HBr + Cl2 → 2HCl + Br2↓

2HI + Cl2 → 2HCl + I2↓

2HI + Br2 → 2HBr + I2↓

10. Окислительно-восстановительные реакции между кислотами

H2SO4(конц) 2HBr → Br2↓ + SO2 + 2H2O

H2SO4(конц) + 8HI → 4I2↓ + H2S + 4H2O

H2SO4(конц) + HCl ≠

H2SO4(конц) + H2S → S↓ + SO2 + 2H2O

3H2SO4(конц) + H2S → 4SO2 + 4H2O

H2SO3 + 2H2S → 3S↓ + 3H2O

2HNO3(конц) + H2S → S↓ + 2NO2 + 2H2O

2HNO3(конц) + SO2 → H2SO4 + 2NO2

6HNO3(конц) + HI → HIO3 + 6NO2 + 3H2O

2HNO3(конц) + 6HCl → 3Cl2 + 2NO + 4H2O

Химические свойства амфотерных гидроксидов

1. Взаимодействие с основным оксидом

амфотерный гидроксид + основной оксид → соль + вода

2Al(OH)3 +Na2O (t)→ 2NaAlO2 + 3H2O

2. Взаимодействие с амфотерным или кислотным оксидом

амфотерный гидроксид + амфотерный/кислотный оксид ≠ реакция не идет

Некоторые амфотерные оксиды (Be(OH)2, Zn(OH)2, Pb(OH)2) реагируют с кислотным оксидом СО2 с образованием осадков основных солей и воды

2Be(OH)2 + CO2 → (BeOH)2CO3↓ + H2O

3. Взаимодействие с щелочью

амфотерный гидроксид + щелочь → соль + вода

Zn(OH)2 + 2KOH(тв) (t)→ K2ZnO2 + 2H2O

Zn(OH)2 + 2KOH → K2

4. Не взаимодействуют с нерастворимыми основаниями или амфотерными гидроксидами

амфотерный гидроксид + нерастворимое основание/амфотерный гидроксид ≠ реакция не идет

5. Взаимодействие с кислотами

амфотерный гидроксид + кислота → соль + вода

Al(OH)3 + 3HCl → AlCl3 + 3H2O

6. Не реагируют с солями

амфотерный гидроксид + соль ≠ реакция не идет

7. Не реагируют с металлами/неметаллами (простыми веществами)

амфотерный гидроксид + металл/неметалл ≠ реакция не идет

8. Термическое разложение

амфотерный гидроксид (t)→ амфотерный оксид + вода

2Al(OH)3 (t)→ Al2O3 + 3H2O

Zn(OH)2 (t)→ ZnO + H2O

Общие сведения о солях

Представим, что у нас есть кислота и щелочь, проведем между ними реакцию нейтрализации и получим кислоту и соль.

NaOH + HCl → NaCl (хлорид натрия) + H2O

Получается, что соль состоит из катиона металла и аниона кислотного остатка.

Соли бывают:

1. Кислые (с одним или двумя катионами водорода (то есть имеют кислую (или слабо-кислую) среду) - KHCO3, NaHSO3).

2. Средние (имею катион металла и анион кислотного остатка, среду надо определять при помощи рН-метра - BaSO4, AgNO3).

3. Основные (имеют гидроксид-ион, то есть щелочную (или слабо-щелочную) среду - Cu(OH)Cl, Ca(OH)Br).

Также существуют двойные соли, образующие при диссоциации катионы двух металлов (K).

Соли, за небольшим исключением, являются твердыми кристаллическими веществами с высокими температурами плавления. Большинство солей белого цвета (KNO3, NaCl, BaSO4 и др.). Некоторые соли имеют окраску (K2Cr2O7 - оранжевого цвета, K2CrO4 - желтого, NiSO4 - зеленого, CoCl3 - розового, CuS - черного). По растворимости их можно разделить на растворимые, малорастворимые и практически нерастворимые. Кислые соли, как правило, лучше растворимы в воде, чем соответствующие средние, а основные - хуже.

Химические свойства солей

1. Соль + вода

При растворении многих солей в воде происходит их частичное или полное разложение - гидролиз . Некоторые соли образуют кристаллогидраты. При растворении в воде средних солей, содержащих амфотерный металл в анионе, образуются комплексные соли.

NaCl + H2O → NaOH + HCl

Na2ZnO2 + 2H2O = Na2

2. Соль + Основной оксид ≠ реакция не идет

3. Соль + амфотерный оксид → (t) кислотный летучий оксид + соль

Амфотерные оксиды вытесняют при сплавлении летучие кислотные оксиды из их солей.

Al2O3 +K2CO3 → KAlO2 + CO2

Fe2O3 + Na2CO3 → 2NaFeO2 + CO2

4. Соль + кислотный нелетучий оксид → кислотный летучий оксид + соль

Нелетучие кислотные оксиды вытесняют при сплавлении летучие кислотные оксиды из их солей.

SiO2 + CaCO3 → (t) CaSiO3 + CO2

P2O5 + Na2CO3 → (t) 2Na3PO4 + 3CO2

3SiO2 + Ca3(PO4)2 → (t) 3CaSiO3 + P2O5

5. Соль + основание → основание + соль

Реакции между солями о основаниями являются реакциями ионного обмена. Поэтому в обычных условиях они протекают только в растворах (и соль и основание должны быть растворимыми) и только при условии, что в результате обмена образуется осадок или слабый электролит (Н2О/NH4OH); газообразные продукты в этих реакциях не образуются.

А. Растворимое основание + растворимая кислая соль → средняя соль + вода

Если соль и основание образованные разными катионами, то образуются две средние соли; в случае кислых солей аммония избыток щелочи приводит к образованию гидроксида аммония.

Ba(OH)2 + Ba(HCO3) → 2BaCO3 + 2H2O

2KOH + 2NaHCO3 → Na2CO3 + K2CO3 + 2H2O

2NaOH + 2NH4HS → Na2S + (NH4)2S + 2H2O

2NaOH(изб) + NH4Hs → Na2S + NH4OH + H2O

Б. Растворимое основание + растворимая средняя/основная соль → нерастворимая соль↓ + основание

Растворимое основание + растворимая средняя/основная соль → соль + нерастворимое основание↓

Растворимое основание + растворимая средняя/основная соль → соль + слабый электролит NH4OH

Растворимое основание + растворимая средняя/основная соль → реакция не идет

Реакция между растворимыми основаниями и средней/основной солью идет только в том случае, если в результате обмена ионами образуется нерастворимая соль, или нерастворимое основание, или слабый электролит NH4OH.

Ba(OH)2 + Na2SO4 → BaSO4↓ + 2NaOH

2NH4OH + CuCl2 → 2NH4Cl + Cu(OH)2↓

Ba(OH)2 + NH4Cl → BaCl2 + NH4OH

NaOH + KCl ≠

Если исходная соль образована многокислотным основанием, при недостатке щелочи образуется основная соль.

NaOH(недост) + AlCl3 → Al(OH)Cl2 + NaCl

При действии щелочей на соли серебра и ртути (II) выделяются не AgOH и Hg(OH)2, которые разлагаются при комнатной температуре, а нерастворимые оксиды Ag2O и HgO.

2AgNO3 + 2NaOH → Ag2O↓ 2NaNO3 + H2O

Hg(NO3)2 + 2KOH → HgO↓ + 2KNO3 + H2O

6. Соль + амфотерны гидроксид → реакция не идет

7. Соль + кислота → кислота + соль

В основном. реакции кислот с солями - реакции ионного обмена, поэтому они протекают в растворах и только в том случае, если при этом образуется нерастворимая в кислотах соль или более слабая и летучая кислота.

HCl + AgNO3 → AgCl↓ + HNO3

2HBr + K2SiO3 → 2KBr +H2SiO3↓

2HNO3 + Na2CO3 → 2NaNO3 + H2O + CO2

А. Кислота1 + соль более летучей/слабой кислоты2 → соль кислоты1 + более летучая/слабая кислота2

Кислоты взаимодействуют с растворами солей более слабых или летучих кислот. Независимо от состава соли (средняя, кислая, основная), как правило, образуется средняя соль и более слабая летучая кислота.

2CH3COOH + Na2S → 2CH3COONa + H2S

HCl + NaHS → NaCl + H2S

Б. Сильная кислота + соль сильной/средней кислоты → нерастворимая соль↓ + кислота

Сильные кислоты взаимодействуют с растворами солей других сильных кислот, если при этом образуется нерастворимая соль. Нелетучая Н3РО4 (кислота средней силы) вытесняет сильные, но летучие соляную НСl и азотную HNO3 кислоты из их солей при условии образования нерастворимой соли.

H2SO4 + Ca(NO3)2 → CaSO4↓ + 2HNO3

2H3PO4 + 3CaCl2 → Ca3(PO4)2↓ + 6HCl

H3PO4 + 3AgNO3 → Ag3PO4↓ + 3HNO3

В. Кислота1 + основная соль кислоты1 → средняя соль + вода

При действии кислоты на основную соль этой же кислоты образуется средняя соль и вода.

HCl + Mg(OH)Cl → MgCl2 + H2O

Г. Многоосновная кислота1 + средняя/кислая соль кислоты1 → кислая соль кислоты1

При действии многоосновной кислоты на среднюю соль этой же кислоты образуется кислая соль, а при действии на кислую соль образуется кислая соль, содержащая большее число атомов водорода.

H3PO4 + Ca3(PO4) → 3CaHPO4

H3PO4 + CaHPO4 → Ca(H2PO4)2

CO2 + H2O + CaCO3 → Ca(HCO3)2

Д. Кислота H2S + соль Ag, Cu, Pb, Cd, Hg → Ag2S/CuS/PbS/CdS/HgS↓ + кислота

Слабая и летучая сероводородная кислота H2S вытесняет даже сильные кислоты из растворов солей Ag, Cu, Pb, Cd и Hg, образуя с ними осадки сульфидов, нерастворимые не только в воде, но и в образующейся кислоте.

H2S + CuSO4 → CuS↓ + H2SO4

Е. Кислота + средняя/комплексная соль с амфотерным Ме в анионе → средняя соль + амфотерный гидроксид↓

→ средняя соль + средняя соль + Н2О

При действии кислоты на среднюю или комплексную соль с амфотерным металлом в анионе, соль разрушается и образуется:

а) в случае недостатка кислоты - средняя соль и амфотерный гидроксид

б) в случае избытка кислоты - две средние соли и вода

2HCl(нед) + Na2ZnO2 → 2NaCl + Zn(OH)2↓

2HCl(нед) + Na2 → 2NaCl + Zn(OH)2↓ + 2H2O

4HCl(изб) + Na2ZnO2 → 2NaCl + ZnCl2 + 2H2O

4HCl(изб) + Na2 → 2NaCl + ZnCl2 + 4H2O

Следует иметь ввиду, что в ряде случаев между кислотами и солями протекают ОВР или реакции комплексообразования. Так, в ОВР вступают:

H2SO4 конц. и I‾/Br‾ (продукты H2S и I2/SO2 и Br2)

H2SO4 конц. и Fe² + (продукты SO2 и Fe³ + )

HNO3 разб./конц. и Fe² + (продукты NO/NO2 и Fe 3 + )

HNO3 разб./конц. и SO3²‾/S²‾ (продукты NO/NO2 и сульфат/сера или сульфат)

HCl конц. и KMnO4/K2Cr2O7/KClO3 (продукты хлор (газ) и Mn² + /Cr³ + /Cl‾.

Ж. Реакция протекает без растворителя

Серная кислота конц. + соль (тв.) → соль кислая/средняя + кислая

Нелетучие кислоты могут вытеснять летучие из их сухих солей. Чаще всего используется взаимодействие концентрированной серной кислоты с сухими солями сильных и слабых кислот, при этом образуется кислота и кислая или средняя соль.

H2SO4(конц) + NaCl(тв) → NaHSO4 + HCl

H2SO4(конц) + 2NaCl(тв) → Na2SO4 + 2HCl

H2SO4(конц) + KNO3(тв) → KHSO4 + HNO3

H2SO4(конц) + CaCO3(тв) → CaSO4 + CO2 + H2O

8. Растворимая соль + растворимая соль → нерастворимая соль↓ + соль

Реакции между солями являются реакциями обмена. Поэтому в обычных условиях они протекают только в том случае, если:

а) обе соли растворимы в воде и взяты в виде растворов

б) в результате реакции образуется осадок или слабый электролит (последний - очень редко).

AgNO3 + NaCl → AgCl↓ + NaNO3

Если одна из исходных солей нерастворима, реакция идет лишь тогда, когда в результате ее образуется еще более неарстворимая соль. Критерием "нерастворимости" служит величина ПР (произведение растворимости), однако, поскольку ее изучение выходит за рамки школьного курса, случаи, когда одна из солей-реагентов нерастворима, далее не рассматриваются.

Если в реакции обмена образуется соль, полностью разлагающаяся в результате гидролиза (в таблице растворимости на месте таких солей стоят прочерки), то продуктами реакции становятся продукты гидролиза этой соли.

Al2(SO4)3 + K2S ≠ Al2S3↓ + K2SO4

Al2(SO4)3 + K2S + 6H2O → 2Al(OH)3↓ + 3H2S + K2SO4

FeCl3 + 6KCN → K3 + 3KCl

AgI + 2KCN → K + KI

AgBr + 2Na2S2O3 → Na3 + NaBr

Fe2(SO4)3 + 2KI → 2FeSO4 + I2 + K2SO4

NaCl + NaHSO4 → (t) Na2SO4 + HCl

Средние соли иногда взаимодействуют друг с другом с образованием комплексных солей. Между солями возможны ОВР. Некоторые соли взаимодействуют при сплавлении.

9. Соль менее активного металла + металл более активный → металл менее активный↓ + соль

Более активный металл вытесняет менее активный металл (стоящий правее в ряду напряжения) из раствора его соли, при этом образуется новая соль, а менее активный металл выделяется в свободном виде (оседает на пластинке активного металла). Исключение - щелочные и щелочноземельные металлы в растворе взаимодействуют с водой.

Соли, обладающие окислительными свойствами, в растворе вступают с металлами и в другие окислительно-восстановительные реакции.

FeSO4 + Zn → Fe↓ + ZnSO4

ZnSO4 + Fe ≠

Hg(NO3)2 + Cu → Hg↓ + Cu(NO3)2

2FeCl3 + Fe → 3FeCl2

FeCl3 + Cu → FeCl2 + CuCl2

HgCl2 + Hg → Hg2Cl2

2CrCl3 + Zn → 2CrCl2 + ZnCl2

Металлы могут вытеснять друг друга и из расплавов солей (реакция осуществляется без доступа воздуха). При этом надо помнить, что:

а) при плавлении многие соли разлагаются

б) ряд напряжения металлов определяет относительную активность металлов только в водных растворах (так, например, Аl в водных растворах менее активен, чем щелочноземельные металлы, а в расплавах - более активен)

K + AlCl3(распл) →(t) 3KCl + Al

Mg + BeF2(распл) → (t) MgF2 + Be

2Al + 3CaCl2(распл) → (t) 2AlCl3 + 3Ca

10. Соль + неметалл

Реакции солей с неметаллами немногочисленны. Это окислительно-восстановительные реакции.

5KClO3 + 6P →(t) 5KCl + 3P2O5

2KClO3 + 3S →(t) 2KCl + 2SO2

2KClO3 + 3C →(t) 2KCl + 3CO2

Более активные галогены вытесняют менее активные из растворов солей галогеноводородных кислот. Исключение - молекулярный фтор, который в растворах реагирует не с солью, а с водой.

2FeCl2 + Cl2 →(t) 2FeCl3

2NaNO2 + O2 → 2NaNO3

Na2SO3 + S →(t) Na2S2O3

BaSO4 + 2C →(t) BaS + 2CO2

2KClO3 + Br2 →(t) 2KBrO3 + Cl2 (такая же реакция характерна и для йода)

2KI + Br2 → 2KBr + I2↓

2KBr + Cl2 → 2KCl + Br2↓

2NaI + Cl2 → 2NaCl + I2↓

11. Разложение солей.

Соль →(t) продукты термического разложения

1. Соли азотной кислоты

Продукты термического разложения нитратов зависят от положения катиона металла в ряду напряжений металлов.

MeNO3 → (t) (для Me левее Mg (исключая Li)) MeNO2 + O2

MeNO3 → (t) (для Me от Mg до Cu, а также Li) MeO + NO2 + O2

MeNO3 → (t) (для Me правее Cu) Me + NO2 + O2

(при термическом разложении нитрата железа (II)/хрома (II) образуется оксид железа (III)/ хрома (III).

2. Соли аммония

Все соли аммония при прокаливании разлагаются. Чаще всего при этом выделяется аммиак NH3 и кислота или продукты ее разложения.

NH4Cl →(t) NH3 + HCl (=NH4Br, NH4I, (NH4)2S)

(NH4)3PO4 →(t) 3NH3 + H3PO4

(NH4)2HPO4 →(t) 2NH3 + H3PO4

NH4H2PO4 →(t) NH3 + H3PO4

(NH4)2CO3 →(t) 2NH3 + CO2 + H2O

NH4HCO3 →(t) NH3 + CO2 + H2O

Иногда соли аммония, содержащие анионы - окислители, разлагаются при нагревании с выделением N2, NO или N2O.

(NH4)Cr2O7 →(t) N2 + Cr2O3 + 4H2O

NH4NO3 →(t) N2O + 2H2O

2NH4NO3 →(t) N2 + 2NO + 4H2O

NH4NO2 →(t) N2 + 2H2O

2NH4MnO4 →(t) N2 + 2MnO2 + 4H2O

3. Соли угольной кислоты

Почти все карбонаты разлагаются до оксида металла и СО2. Карбонаты щелочных металлов кроме лития не разлагаются при нагревании. Карбонаты серебра и ртути разлагаются до свободного металла.

MeCO3 →(t) MeO + CO2

2Ag2CO3 →(t) 4Ag + 2CO2 + O2

Все гидрокарбонаты разлагаются до соответствующего карбоната.

MeHCO3 →(t) MeCO3 + CO2 + H2O

4. Соли сернистой кислоты

Сульфиты при нагревании диспропорционируют, образуя сульфид и сульфат. Образующийся при разложении (NH4)2SO3 сульфид (NH4)2S сразу же разлагается на NH3 и H2S.

MeSO3 →(t) MeS + MeSO4

(NH4)2SO3 →(t) 2NH3 + H2S + 3(NH4)2SO4

Гидросульфиты разлагаются до сульфитов, SO2 и H2O.

MeHSO3 →(t) MeSO3 + SO2 +H2O

5. Соли серной кислоты

Многие сульфаты при t > 700-800 С разлагаются до оксида металла и SO3, который при такой температуре разлагается до SO2 и О2. Сульфаты щелочных металлов термостойки. Сульфаты серебра и ртути разлагаются до свободного металла. Гидросульфаты разлагаются сначала до дисульфатов, а затем до сульфатов.

2CaSO4 →(t) 2CaO + 2SO2 + O2

2Fe2(SO4)3 →(t) 2Fe2O3 + 6SO2 + 3O2

2FeSO4 →(t) Fe2O3 + SO3 + SO2

Ag2SO4 →(t) 2Ag + SO2 + O2

MeHSO4 →(t) MeS2O7 + H2O

MeS2O7 →(t) MeSO4 + SO3

6. Комплексные соли

Гидроксокомплексы амфотерных металлов разлагаются в основном на среднюю соль и воду.

K →(t) KAlO2 + 2H2O

Na2 →(t) ZnO + 2NaOH + H2O

7. Основные соли

Многие основные соли при нагревании разлагаются. Основные соли бесислородных кислот разлагаются на воду и оксосоли

Al(OH)2Br →(t) AlOBr + H2O

2AlOHCl2 →(t) Al2OCl4 + H2O

2MgOHCl →(t) Mg2OCl2 + H2O

Основные соли кислородсодержащих кислот разлагаются на оксид металла и продукты термического разложения соответствующей кислоты.

2AlOH(NO3)2 →(t) Al2O3 + NO2 + 3O2 + H2O

(CuOH)2CO3 →(t) 2CuO + H2O + CO2

8. Примеры термического разложения других солей

4K2Cr2O7 →(t) 4K2CrO4 + 2Cr2O3 + 3O2

2KMnO4 →(t) K2MnO4 + MnO2 + O2

KClO4 →(t) KCl + O2

4KClO3 →(t) KCl + 3KClO4

2KClO3 →(t) 2KCl +3O2

2NaHS →(t) Na2S + H2S

2CaHPO4 →(t) Ca2P2O7 + H2O

Ca(H2PO4)2 →(t) Ca(PO3)2 +2H2O

2AgBr →(hν) 2Ag + Br2 (=AgI)

Большая часть представленного материала взята из пособия Дерябиной Н.Е. "Химия. Основные классы неорганических веществ". ИПО "У Никитских ворот" Москва 2011.

Классификация веществ Все вещества можно разделить на простые состоящие из атомов одного элемента и сложные – состоящие из атомов различных элементов. Простые вещества делятся на металлы и неметаллы: Металлы – s и d элементы. Неметаллы – p элементы. Сложные вещества делятся на органические и неорганические.

Свойства металлов определяются способностью атомов отдавать свои электроны. Характерный тип химической связи для металлов – металлическая связь. Она характеризуется такими физическими свойствами: ковкость, тягучесть, теплопроводность, электропроводность. При комнатных условиях все металлы кроме ртути находятся в твердом состоянии.

Свойства неметаллов определяются способностью атомов легко принимать электроны и плохо отдавать свои. Неметаллы обладают противоположными металлам физическими свойствами: их кристаллы хрупкие, отсутствует «металлический» блеск, низкие значения теплои электропроводности. Часть неметаллов при комнатных условиях газообразна.

Классификация органических соединений. По строению углеродного скелета: Насыщенные/ненасыщенные Линейные/разветвленные/циклические По наличию функциональных групп: Спирты Кислоты Простые и сложные эфиры Углеводы Альдегиды и кетоны

Оксиды – сложные вещества, молекулы которых состоят из двух элементов, один из которых – кислород в степени окисления -2. Оксиды делятся на солеобразующие и несолеобразующие(безразличные). Солеобразующие оксиды делятся на основные, кислотные и амфотерные.

Основные оксиды – это оксиды, образующие в реакциях с кислотами или кислотными оксидами соли. Основные оксиды образуются металлами с невысокой степенью окисления (+1, +2) – это элементы 1 й и 2 й групп периодической таблицы. Примеры основных оксидов: Na 2 O, Ca. O, Mg. O, Cu. O. Примеры реакций образования солей: Cu. O + 2 HCl Cu. Cl 2 + H 2 O, Mg. O + CO 2 Mg. CO 3.

Основные оксиды Оксиды щелочных и щелочноземельных металлов реагируют с водой, образуя основания: Na 2 O + H 2 O 2 Na. OH Ca. O + H 2 O Ca(OH)2 Оксиды других металлов с водой не реагируют, соответствующие основания получаются косвенным путем.

Кислотные оксиды – это оксиды, образующие в реакциях с основаниями или с основными оксидами соли. Кислотные оксиды образуются элементами – неметаллами и d – элементами в высоких степенях окисления (+5, +6, +7). Примеры кислотных оксидов: N 2 O 5, SO 3, CO 2, Cr. O 3, V 2 O 5. Примеры реакций кислотных оксидов: SO 3 + 2 KOH K 2 SO 4 + H 2 O Ca. O + CO 2 Ca. CO 3

Кислотные оксиды Часть кислотных оксидов реагирует с водой с образованием соответствующих кислот: SO 3 + H 2 O H 2 SO 4 N 2 O 5 + H 2 O 2 HNO 3 Другие кислотные оксиды напрямую с водой не реагируют (Si. O 2 , Te. O 3 , Mo. O 3 , WO 3), соответствующие кислоты получаются косвенным путем. Один из способов получения кислотных оксидов – отнятие воды от соответствующих кислот. Поэтому кислотные оксиды иногда называются «ангидридами» .

Амфотерные оксиды обладают свойствами и кислотных и основных оксидов. С сильными кислотами такие оксиды реагируют как основные, а с сильными основаниями как кислотные: Sn. O + H 2 SO 4 Sn. SO 4 + H 2 O Sn. O + 2 KOH + H 2 O K 2

Способы получения оксидов Окисление простых веществ: 4 Fe + 3 O 2 2 Fe 2 O 3, S + O 2 SO 2. Горение сложных веществ: CH 4 + 2 O 2 CO 2 + 2 H 2 O, 2 SO 2 + O 2 2 SO 3. Термическое разложение солей, оснований и кислот. Примеры соответственно: Ca. CO 3 Ca. O + CO 2, Cd(OH)2 Cd. O + H 2 O, H 2 SO 4 SO 3 + H 2 O.

Номенклатура оксидов Название оксида строится по формуле «оксид + название элемента в родительном падеже» . Если элемент образует несколько оксидов, то после названия в скобках указывают степень окисления элемента. Например: CO – оксид углерода (II), CO 2 – оксид углерода (IV), Na 2 O – оксид натрия. Иногда вместо степени окисления в названии указывается число атомов кислорода: монооксид, диоксид, триокид и т. д.

Гидроксиды – соединения, содержащие в своем составе гидроксогруппу (-OH). В зависимости от прочности связей в ряду Э-O-H гидроксиды делятся на кислоты и основания: У кислот самая слабая связь O-H, поэтому при их диссоциации образуется Э-О- и H+. У оснований самая слабая связь Э-О, поэтому при диссоциации образуются Э+ и OH-. У амфотерных гидроксидов может быть разорвана любая из этих двух связей, в зависимости от природы вещества, с которым реагирует гидроксид.

Кислоты Термин «кислота» в рамках теории электролитической диссоциации имеет следующее определение: Кислоты – это вещества, диссоциирующие в растворах с образованием катионов водорода и анионов кислотного остатка. HA H++AКислоты делятся на сильные и слабые (по способности к диссоциации), на одно-, двух-, и трехосновные (по количеству содержащихся атомов водорода) и на кислородсодержащие и бескислородные. Например: H 2 SO 4 – сильная, двухосновная, кислородсодержащая.

Химические свойства кислот 1. Взаимодействие с основаниями с образованием соли и воды (реакция нейтрализации): H 2 SO 4 + Cu (OH)2 Cu. SO 4 + 2 H 2 O. 2. Взаимодействие с основными и амфотерными оксидами с образованием солей и воды: 2 HNO 3 + Mg. O Mg(NO 3)2 + H 2 O, H 2 SO 4 + Zn. O Zn. SO 4 + H 2 O.

Химические свойства кислот 3. Взаимодействие с металлами. Металлы, стоящие в “Ряду напряжений” до водорода, вытесняют водород из растворов кислот (кроме азотной и концентрированной серной кислот); при этом образуется соль: Zn + 2 HCl Zn. Cl 2 + H 2 Металлы, находящиеся в “Ряду напряжений” после водорода, водород из растворов кислот не вытесняют Cu + 2 HCl ≠.

Химические свойства кислот 4. Некоторые кислоты при нагревании разлагаются: H 2 Si. O 3 H 2 O + Si. O 2 5. Менее летучие кислоты вытесняют более летучие кислоты из их солей: H 2 SO 4 конц + Na. Clтв Na. HSO 4 + HCl 6. Более сильные кислоты вытесняют менее сильные кислоты из растворов их солей: 2 HCl + Na 2 CO 3 2 Na. Cl + H 2 O + CO 2

Номенклатура кислот Названия бескислородных кислот составляют, добавляя к корню русского названия кислотообразующего элемента (или к названию группы атомов, например, CN – циан, CNS – родан) суффикс «-о-» , окончание «водородная» и слово «кислота» . Например: HCl – хлороводородная кислота H 2 S – сероводородная кислота HCN – циановодородная кислота

Номенклатура кислот Названия кислородсодержащих кислот образуются по формуле «название элемента» + «окончание» + «кислота» . Окончание меняется в зависимости от степени окисления кислотообразующего элемента. Окончания «–овая» / «-ная» используются для высших степеней окисления. HCl. O 4 – хлорная кислота. Затем используются окончание «–оватая» . HCl. O 3 – хлорноватая кислота. Затем используется окончание «–истая» . HCl. O 2 – хлористая кислота. Наконец, последнее окончание «-оватистая» HCl. O – хлорноватистая кислота.

Номенклатура кислот Если элемент образует всего две кислородсодержащие кислоты (например сера), то для высшей степени окисления используется окончание «–овая» / «- ная» , а для более низкой окончание «-истая» . Пример для кислот серы: H 2 SO 4 – серная кислота H 2 SO 3 – сернистая кислота

Номенклатура кислот Если один кислотный оксид присоединяет различное количество молекул воды при образовании кислоты, то кислота, содержащая большее количество воды обозначается приставкой «орто-» , а меньшее «мета-» . P 2 O 5 + H 2 O 2 HPO 3 - метафосфорная кислота P 2 O 5 + 3 H 2 O 2 H 3 PO 4 - ортофосфорная кислота.

Основания Термин «основание» в рамках теории электролитической диссоциации имеет следующее определение: Основаниями – это вещества, диссоциирующие в растворах с образованием гидроксид - ионов (OH‾) и ионов металлов. Основания классифицируются на слабые и сильные(по способности к диссоциации), на одно-, двух-, трехкислотные (по количеству гидроксогрупп, которые могут заместиться на кислотный остаток) на растворимые (щелочи) и нерастворимые(по способности растворяться в воде). Например, KOH – сильное, однокислотное, растворимое.

Химические свойства оснований 1. Взаимодействие с кислотами: Ca(OH)2 + H 2 SO 4 Ca. SO 4 + H 2 O 2. Взаимодействие с кислотными оксидами: Ca(OH)2 + CO 2 Ca. CO 3 + H 2 O 3. Взаимодействие с амфотерными оксидами: 2 KOH + Sn. O + H 2 O K 2

Химические свойства оснований 4. Взаимодействие с амфотерными основаниями: 2 Na. OH + Zn(OH)2 Na 2 5. Термическое разложение оснований с образованием оксидов и воды: Ca(OH)2 Ca. O + H 2 O. Гидроксиды щелочных металлов при нагревании не распадаются. 6. Взаимодействие с амфотерными металлами (Zn, Al, Pb, Sn, Be): Zn + 2 Na. OH + 2 H 2 O Na 2 + H 2

Номенклатура оснований Название основания образуется по формуле «гидроксид» + «название металла в родительном падеже» . Если элемент образует несколько гидроксидов, то в скобках указывается его степень окисления. Например Cr(OH)2 – гидроксид хрома (II), Cr(OH)3 – гидроксид хрома (III). Иногда в названии приставкой к слову «гидроксид» указывается количество гидроксогрупп – моногидроксид, дигидроксид, тригидроксид, и т. д.

Соли Термин «основание» в рамках теории электролитической диссоциации имеет следующее определение: Соли - это вещества, диссоциирующие в растворах или в расплавах с образованием положительно заряженных ионов, отличных от ионов водорода, и отрицательно заряженных ионов, отличных от гидроксид – ионов. Соли рассматриваются как продукт частичного или полного замещения атомов водорода на атомы металла или гидроксогрупп на кислотный остаток. Если замещение происходит полностью, то образуется нормальная (средняя) соль. Если замещение происходит частично, то такие соли называются кислыми(имеются атомы водорода), либо основными (имеются гидроксогруппы).

Химические свойства солей 1. Соли вступают в реакции ионного обмена, если при этом образуется осадок, слабый электролит или выделяется газ: с щелочами реагируют соли, катионам металлов которых соответствуют нерастворимые основания: Cu. SO 4 + 2 Na. OH Na 2 SO 4 + Cu (OH)2↓ с кислотами взаимодействуют соли: а) катионы которых образуют с анионом новой кислоты нерастворимую соль: Ba. Cl 2 + H 2 SO 4 Ba. SO 4↓ + 2 HCl б) анионы которой отвечают неустойчивой угольной или какойлибо летучей кислоте (в последнем случае реакция проводится между твердой солью и концентрированной кислотой): Na 2 CO 3 + 2 HCl 2 Na. Cl + H 2 O + CO 2, Na. Clтв + H 2 SO 4 конц Na. HSO 4 + HCl;

Химические свойства солей в) анионы которой отвечают малорастворимой кислоте: Na 2 Si. O 3 + 2 HCl H 2 Si. O 3↓ + 2 Na. Cl г) анионы которой отвечают слабой кислоте: 2 CH 3 COONa + H 2 SO 4 Na 2 SO 4 + 2 CH 3 COOH 2. cоли взаимодействуют между собой, если одна из образующихся новых солей нерастворима или разлагается (полностью гидролизуется) с выделением газа или осадка: Ag. NO 3 + Na. Cl Na. NO 3+ Ag. Cl↓ 2 Al. Cl 3 + 3 Na 2 CO 3 + 3 H 2 O 2 Al (OH)3↓ + 6 Na. Cl + 3 CO 2

Химические свойства солей 3. Соли могут вступать во взаимодействие с металлами, если металл, которому соответствует катион соли, находится в“Ряду напряжений “правее реагирующего свободного металла (более активный металл вытесняет менее активный металл из раствора его соли): Zn + Cu. SO 4 Zn. SO 4 + Cu 4. Некоторые соли разлагаются при нагревании: Ca. CO 3 Ca. O + CO 2 5. Некоторые соли способны реагировать с водой и образовывать кристаллогидраты: Cu. SO 4 + 5 H 2 O Cu. SO 4*5 H 2 O

Химические свойства солей 6. Соли подвергаются гидролизу. Подробно этот процесс будет рассмотрен в дальнейших лекциях. 7. Химические свойства кислых и основных солей отличаются от свойств средних солей тем, что кислые соли вступают также во все реакции, характерные для кислот, а основные соли вступают во все реакции, характерные для оснований. Например: Na. HSO 4 + Na. OH Na 2 SO 4 + H 2 O, Mg. OHCl + HCl Mg. Cl 2 + H 2 O.

Получение солей 1. Взаимодействие основного оксида с кислотой: Cu. O + H 2 SO 4 Cu. SO 4 + H 2 O 2. Взаимодействие металла с солью другого металла: Mg + Zn. Cl 2 Mg. Cl 2 + Zn 3. Взаимодействие металла с кислотой: Mg + 2 HCl Mg. Cl 2 + H 2 4. Взаимодействие основания с кислотным оксидом: Ca(OH)2 + CO 2 Ca. CO 3 + H 2 O 5. Взаимодействие основания с кислотой: Fe(OH)3 + 3 HCl Fe. Cl 3 + 3 H 2 O

Получение солей 6. Взаимодействие соли с основанием: Fe. Cl 2 + 2 KOH Fe(OH)2 + 2 KCl 7. Взаимодействие двух солей: Ba(NO 3)2 + K 2 SO 4 Ba. SO 4 + 2 KNO 3 8. Взаимодействие металла с неметаллом: 2 K + S K 2 S 9. Взаимодействие кислоты с солью: Ca. CO 3 + 2 HCl Ca. Cl 2 + H 2 O + CO 2 10. Взаимодействие кислотного и основного оксидов: Ca. O + CO 2 Ca. CO 3

Номенклатура солей Название средней соли формируется по следующему правилу: «название кислотного остатка в именительном падеже» + «название металла в родительном падеже» . Если металл может входить в состав соли в нескольких степенях окисления, то степень окисления указывается в скобках после названия соли.

Названия кислотных остатков. Для бескислородных кислот название кислотного остатка состоит из корня латинского названия элемента и окончания «ид» . Например: Na 2 S- сульфид натрия, Na. Cl – хлорид натрия. Для кислородсодержащих кислот название остатка состоит из корня латинского названия и нескольких вариантов окончаний.

Названия кислотных остатков. Для кислотного остатка с элементов в высшей степени окисления используется окончание «ат» . Na 2 SO 4 – сульфат натрия. Для кислотного остатка с меньшей степенью окисления (-истая кислота) используется окончание «-ит» . Na 2 SO 3 – сульфит натрия. Для кислотного остатка с еще меньшей степенью окисления (-оватистая кислота) используется приставка «гиппо-» и окончание «-ит» . Na. Cl. O – гиппохлорит натрия.

Названия кислотных остатков. Некоторые кислотные остатки называются историческими названиями Na. Cl. O 4 – перхлорат натрия. К названию кислых солей добавляется приставка «гидро» , и перед ней еще одна приставка, указывающая на число незамещенных (оставшихся) атомов водорода. Например, Na. H 2 PO 4 – дигидроортофосфат натрия. Аналогично к названию металла основных солей добавляется приставка «гидроксо-» . Например, Cr(OH)2 NO 3 – нитрат дигидроксохрома (III).

Названия и формулы кислот и их остатков Формула кислоты Кислотный остаток Название кислотного остатка 2 3 4 Азотная HNO 3 ‾ нитрат Азотистая HNO 2 ‾ нитрит Бромоводородная HBr Br ‾ бромид Йодоводородная HI I‾ йодид Кремниевая H 2 Si. O 32¯ силикат Марганцовая HMn. O 4¯ перманганат Марганцовистая H 2 Mn. O 42¯ манганат Метафосфорная HPO 3¯ H 3 As. O 43¯ Название кислоты 1 Мышьяковая метафосфат арсенат

Формула кислоты Мышьяковистая H 3 As. O 3 Ортофосфорная H 3 PO 4 Название кислоты Пирофосфорная H 4 P 2 O 7 Двухромовая Родановодородная Сернистая Фосфористая Фтороводородная (плавиковая) Хлороводородная (соляная) Хлорная Хлорноватая Хлористая Хлорноватистая Хромовая Циановодородная (синильная) H 2 Cr 2 O 7 HCNS H 2 SO 4 H 2 SO 3 H 3 PO 3 Кислотный Название кислотного остаток остатка As. O 33¯ арсенит PO 43¯ ортофосфат (фосфат) пирофосфат P 2 O 7 4 ¯ (дифосфат) Cr 2 O 72¯ дихромат CNS¯ роданид SO 42¯ сульфат SO 32¯ сульфит PO 33¯ фосфит HF F¯ HCl. O 4 HCl. O 3 HCl. O 2 HCl. O H 2 Cr. O 4 Cl¯ Cl. O 4¯ Cl. O 3¯ Cl. O 2¯ Cl. O¯ Cr. O 42¯ HCN CN¯ фторид хлорид перхлорат хлорит гипохлорит хромат цианид