Портал о ремонте ванной комнаты. Полезные советы

Леонард эйлер - швейцарец с русской душой. Великий математик Эйлер Леонард: достижения в математике, интересные факты, краткая биография

За время существования Академии наук в России, видимо, одним из самых знаменитых ее членов был математик Леонард Эйлер (1707-1783).

Он стал первым, кто в своих работах начал возводить последовательное здание анализа бесконечно малых. Только после его исследований, изложенных в грандиозных томах его трилогии «Введение в анализ», «Дифференциальное исчисление» и «Интегральное исчисление», анализ стал вполне оформившейся наукой - одним из самых глубоких научных достижений человечества.

Леонард Эйлер родился в швейцарском городе Базеле 15 апреля 1707 года. Отец его, Павел Эйлер, был пастором в Рихене (близ Базеля) и имел некоторые познания в математике. Отец предназначал своего сына к духовной карьере, но сам, интересуясь математикой, преподавал ее и сыну, надеясь, что она ему впоследствии пригодится в качестве интересного и полезного занятия. По окончании домашнего обучения тринадцатилетний Леонард был отправлен отцом в Базель для слушания философии.

Среди других предметов на этом факультете изучались элементарная математика и астрономия, которые преподавал Иоганн Бернулли Вскоре Бернулли заметил талантливость юного слушателя и начал заниматься с ним отдельно.

Получив в 1723 году степень магистра, после произнесения речи на латинском языке о философии Декарта и Ньютона, Леонард, по желанию своего отца, приступил к изучению восточных языков и богословия. Но его все больше влекло к математике. Эйлер стал бывать в доме свое учителя, и между ним и сыновьями Иоганна Бернулли - Николаем
Даниилом - возникла дружба, сыгравшая очень большую роль в жизни Эйлера.

В 1725 году братья Бернулли были приглашены в члены Петербургской академии наук, недавно основанной императрицей Екатериной I. Уезжая, Бернулли обещали Леонарду известить его, если найдется и для него подходящее занятие в России. На следующий год они сообщили, что для Эйлера есть место, но, однако, в качестве физиолога при медицинском отделении академии. Узнав об этом, Леонард немедленно записался в студенты медицины Базельского университета. Прилежно и успешно изучая
науки медицинского факультета, Эйлер находит время и для математических занятий. За это время он написал напечатанную потом, в 1727 году, в Базеле диссертацию о распространении звука и исследование по вопросу размещении мачт на корабле.

В Петербурге имелись самые благоприятные условия для расцвета гения Эйлера: материальная обеспеченность, возможность заниматься любимым делом, наличие ежегодного журнала для публикации трудов. Здесь же работала самая большая тогда в мире группа специалистов в области математических наук, в которую входили Даниил Бернулли (его брат Николай скончался в 1726 году), разносторонний X. Гольдбах, с которым Эйлера связывали общие интересы к теории чисел и другим вопросам, автор работ по тригонометрии Ф.Х. Майера, астроном и географ Ж.Н. Делиль, математик и физик Г. В. Крафт и другие. С этого времени Петербургская Академия стала одним из главных центров математики в мире.

Открытия Эйлера, которые благодаря его оживленной переписке нередко становились известными задолго до издания, делают его имя все более широко известным. Улучшается его положение в Академии наук: в 1727 году он начал работу в звании адъюнкта, то есть младшего по рангу академика, а в 1731 году он стал профессором физики, т. е. действительным членом Академии. В 1733 году получил кафедру высшей математики, которую до него занимал Д. Бернулли, возвратившийся в том же году в Базель. Рост авторитета Эйлера нашел своеобразное отражение в письмах к нему его учителя Иоганна Бернулли. В 1728 году Бернулли обращается к «ученейшему и даровитейшему юному мужу Леонарду Эйлеру», в 1737 году - к «знаменитейшему и остроумнейшему математику», а в 1745 году - к «несравненному Леонарду Эйлеру - главе математиков».

В 1735 году академии потребовалось выполнить весьма сложную работу по расчету траектории кометы. По мнению академиков, на это нужно было употребить несколько месяцев труда. Эйлер взялся выполнить это в три дня и исполнил работу, но вследствие этого заболел нервною горячкою с воспалением правого глаза, которого он и лишился. Вскоре после этого, в 1736 году, появились два тома его аналитической механики. Потребность в этой книге была большая; немало было написано статей по разным вопросам механики, но хорошего трактата по механике не имелось.

В 1738 году появились две части введения в арифметику на немецком языке, в 1739 году - новая теория музыки. Затем в 1840 году Эйлер написал сочинение о приливах и отливах морей, увенчанное одной третью премии Французской академии; две других трети были присуждены Даниилу Бернулли и Маклорену за сочинения на ту же тему.

В конце 1740 года власть в России попала в руки регентши Анны Леопольдовны и ее окружения. В столице сложилась тревожная обстановка. В это время прусский король Фридрих II задумал возродить основанное еще Лейбницем Общество наук в Берлине, долгие годы почти бездействовавшее. Через своего посла в Петербурге король пригласил Эйлера в Берлин. Эйлер, считая, что «положение начало представляться довольно
неуверенным», приглашение принял.

В Берлине Эйлер поначалу собрал около себя небольшое ученое общество, а затем был приглашен в состав вновь восстановленной Королевской академии наук и назначен деканом математического отделения. В 1743 году он издал пять своих мемуаров, из них четыре по математике. Один из этих трудов замечателен в двух отношениях. В нем указывается на способ интегрирования рациональных дробей путем разложения их на
частные дроби и, кроме того, излагается обычный теперь способ интегрирования линейных обыкновенных уравнений высшего порядка с постоянными коэффициентами.

Вообще большинство работ Эйлера посвящено анализу. Эйлер так упростил и дополнил целые большие отделы анализа бесконечно малых, интегрирования функций, теории рядов, дифференциальных уравнений, начатые уже до него, что они приобрели примерно ту форму, которая занимала в большой мере сохраняется и до сих пор. Эйлер, кроме того, начал целую новую главу анализа - вариационное исчисление. Это его начинание вскоре подхватил Лагранж и таким образом сложилась новая наука.

В 1744 году Эйлер напечатал в Берлине три сочинения о движении светил: первое - теория движения планет и комет, заключающая в себе изложение способа определения орбит из нескольких наблюдений; второе и третье - о движении комет.

Семьдесят пять работ Эйлер посвятил геометрии. Часть из них хотя и любопытна, но не очень важна. Некоторые же просто составили эпоху. Во-первых, Эйлера надо считать одним из зачинателей исследований по геометрии в пространстве вообще. Он первый дал связное изложение аналитической геометрии в пространстве (во «Введении в анализ») и, в частности, ввел так называемые углы Эйлера, позволяющие изучать повороты
тела вокруг точки.

В работе 1752 года «Доказательство некоторых замечательных свойств, которым подчинены тела, ограниченные плоскими гранями», Эйлер нашел соотношение между числом вершин, ребер и граней многогранника: сумма числа вершин и граней равна числу ребер плюс два. Такое соотношение предполагал еще Декарт, но Эйлер доказал его в своих мемуарах Это в некотором смысле первая в истории математики крупная теорема топологии - самой глубокой части геометрии.

Занимаясь вопросами о преломлении лучей света и написав немало мемуаров об этом предмете, Эйлер издал в 1762 году сочинение, в котором предлагается устройство сложных объективов с целью уменьшения хроматической аберрации. Английский художник Долдонд, открывший два различной преломляемости сорта стекла, следуя указаниям Эйлера, построил первые ахроматические объективы.

В 1765 году Эйлер написал сочинение, где решает дифференциальные уравнения вращения твердого тела, которые носят название Эйлеровых уравнений вращения твердого тела.

Много написал ученый сочинений об изгибе и колебании упругих стержней. Вопросы эти интересны не только в математическом, но и в практическом отношении.

Фридрих Великий давал ученому поручения чисто инженерного характера. Так, в 1749 году он поручил ему осмотреть канал Фуно между Гавелом и Одером и дать рекомендации по исправлению недостатков этого водного пути. Далее ему поручено было исправить водоснабжение в Сан-Суси.

Результатом этого стало более двадцати мемуаров по гидравлике, написанных Эйлером в разное время. Уравнения гидродинамики первого порядка с частными производными от проекций скорости, плотности к давлению называются гидродинамическими уравнениями Эйлера.

Покинув Петербург, Эйлер сохранил самую тесную связь с русской Академией наук, в том числе официальную: он был назначен почетным членом, и ему была определена крупная ежегодная пенсия, а он, со своей стороны, взял на себя обязательства в отношении дальнейшего сотрудничества. Он закупал для нашей Академии книги, физические и астрономические приборы, подбирал в других странах сотрудников, сообщая подробнейшие характеристики возможных кандидатов, редактировал математический отдел академических записок, выступал как арбитр в научных
спорах между петербургскими учеными, присылал темы для научных конкурсов, а также информацию о новых научных открытиях и т. д. В доме Эйлера в Берлине жили студенты из России: М. Софронов, С Котельников, С. Румовский, последние позднее стали академиками.

Из Берлина Эйлер, в частности, вел переписку с Ломоносовым, в творчестве которого он высоко ценил счастливое сочетание теории с экспериментом. В 1747 году он дал блестящий отзыв о присланных ему на заключение статьях Ломоносова по физике и химии, чем немало разочаровал влиятельного академического чиновника Шумахера, крайне враждебно относившегося к Ломоносову.

В переписке Эйлера с его другом академиком Петербургской академии наук Гольдбахом мы находим две знаменитые «задачи Гольдбаха»: доказать, что всякое нечетное натуральное число есть сумма трех простых чисел, а всякое четное - двух. Первое из этих утверждений было при помощи весьма замечательного метода доказано уже в наше время (1937) академиком И. М. Виноградовым, а второе не доказано до сих пор.

Эйлера тянуло назад в Россию. В 1766 году он получил через посла в Берлине, князя Долгорукова, приглашение императрицы Екатерины II вернуться в Академию наук на любых условиях. Несмотря на уговоры остаться, он принял приглашение и в июне прибыл в Петербург.

Императрица предоставила Эйлеру средства на покупку дома. Старший из его сыновей Иоганн Альбрехт стал академиком в области физики, Карл занял высокую должность в медицинском ведомстве, Христофора, родившегося в Берлине, Фридрих II долго не отпускал с военной службы, и потребовалось вмешательство Екатерины II, чтобы тот смог приехать к отцу. Христофор был назначен директором Сестрорецкого оружейного
завода.

Еще в 1738 году Эйлер ослеп на один глаз, а в 1771-м после операции почти совсем потерял зрение и мог писать только мелом на черной доске, но благодаря ученикам и помощникам. И.А Эйлеру, А И. Локселю, В.Л. Крафту, С.К. Котельникову, М.Е. Головину, а главное Н И Фуссу, прибывшему из Базеля, продолжал работать не менее интенсивно, чем раньше.

Эйлер, при своих гениальных способностях и замечательной памяти, продолжал работать, диктовать свои новые мемуары. Только с 1769 по 1783 год Эйлер продиктовал около 380 статей и сочинений, а за свою жизнь написал около 900 научных работ.

Работа 1769 года «Об ортогональных траекториях» Эйлера содержит блестящие соображения о получении с помощью функции комплексной переменной из уравнений двух взаимно ортогональных семейств кривых на поверхности (т. е. таких линий, как меридианы и параллели на сфере) бесконечного числа других взаимно ортогональных семейств. Работа эта в истории математики оказалась очень важной.

В следующей работе 1771 года «О телах, поверхность которых может быть развернута в плоскость» Эйлер доказывает знаменитую теорему о том, что любая поверхность, которую можно получить лишь изгибая плоскость, но не растягивая ее и не сжимая, если она не коническая и не цилиндрическая, представляет собой совокупность касательных к некоторой пространственной кривой.

Столь же замечательны работы Эйлера по картографическим проекциям.

Можно себе представить, каким откровением для математиков той эпохи явились хотя бы работы Эйлера о кривизне поверхностей и о развертывающихся поверхностях. Работы же, в которых Эйлер исследует отображения поверхности, сохраняющие подобие в малом (конформные отображения), основанные на теории функций комплексного переменного,
должны были казаться прямо-таки трансцендентными А работа о многогранниках начинала совсем новую часть геометрии и по своей принципиальности и глубине стояла в ряду с открытиями Евклида.

Неутомимость и настойчивость в научных исследованиях Эйлера были таковы, что в 1773 году, когда сгорел его дом и погибло почти все имущество его семейства, он и после этого несчастья продолжал диктовать свои исследования. Вскоре после пожара искусный окулист, барон Вентцель, произвел операцию снятия катаракты, но Эйлер не выдержал надлежащего времени без чтения и ослеп окончательно.

В том же 1773 году умерла жена Эйлера, с которой он прожил сорок лет. Через три года он вступил в брак с ее сестрой, Саломеей Гзелль Завидное здоровье и счастливый характер помогали Эйлеру «противостоять ударам судьбы, которые выпали на его долю. Всегда ровное настроение, мягкая и естественная бодрость, какая-то добродушная насмешливость, умение наивно и забавно рассказывать делали разговор с ним столь
же приятным, сколь и желанным...» Он мог иногда вспылить, но «был не
способен долго питать против кого-либо злобу.. » - вспоминал Н И Фусс.

Эйлера постоянно окружали многочисленные внуки, часто на руках у него сидел ребенок, а на шее лежала кошка. Он сам занимался с детьми математикой. И все это не мешало ему работать.

18 сентября 1783 года Эйлер скончался от апоплексического удара в присутствии своих помощников профессоров Крафта и Лекселя. Он был похоронен на Смоленском лютеранском кладбище Академия заказала известному скульптору Ж.Д. Рашетту, хорошо знавшему Эйлера, мраморный бюст покойного, а княгиня Дашкова подарила мраморный пьедестал.

До конца XVIII века конференц-секретарем Академии оставался И.А. Эйлер, которого сменил Н.И. Фусс, женившийся на дочери последнего, а в 1826 году - сын Фусса Павел Николаевич, так что организационной стороной жизни Академии около ста лет ведали потомки Леонарда Эйлера. Эйлеровские традиции оказали сильное влияние и на учеников
Чебышева: A.M. Ляпунова, А.Н. Коркина, Е.И. Золотарева, А.А. Маркова и других, определив основные черты петербургской математической школы.

Нет ученого, имя которого упоминалось бы в учебной математической литературе столь же часто, как имя Эйлера. Даже в средней школе логарифмы и тригонометрию изучают до сих пор в значительной степени «по Эйлеру».

Эйлер нашел доказательства всех теорем Ферма, показал неверность одной из них, а знаменитую Великую теорему Ферма доказал для «трех» и «четырех». Он также доказал, что всякое простое число вида 4п+1 всегда разлагается на сумму квадратов других двух чисел.

Эйлер начал последовательно строить элементарную теорию чисел. Начав с теории степенных вычетов, он затем занялся квадратичными вычетами. Это так называемый квадратичный закон взаимности. Эйлер также много лет занимался решением неопределенных уравнений второй степени с двумя неизвестными.

Во всех этих трех фундаментальных вопросах, которые больше двух столетий после Эйлера и составляли основной объем элементарной теории чисел, ученый ушел очень далеко, однако во всех трех его постигла неудача. Полное доказательство получили Гаусс и Лагранж.

Эйлеру принадлежит инициатива создания и второй части теории чисел - аналитической теории чисел, в которой глубочайшие тайны целых чисел, например распределение простых чисел в ряду всех натуральных чисел, получаются из рассмотрения свойств некоторых аналитических функций.

Созданная Эйлером аналитическая теория чисел продолжает развиваться и в наши дни.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Большая советская энциклопедия: Эйлер (Euler) Леонард , математик, механик и физик. Род. в семье небогатого пастора Пауля Эйлера. Образование получил сначала у отца (который в молодости занимался математикой под рук. Я. Бернулли), а в 1720-24 в Базельском университете, где слушал лекции по математике И. Бернулли.
В кон. 1726 Э. был приглашен в Петербургскую АН и в мае 1727 приехал в Петербург. В только что организованной академии Э. нашел благоприятные условия для научной деятельности, что позволило ему сразу же приступить к занятиям математикой и механикой. За 14 лет первого петербургского периода жизни Э. подготовил к печати около 80 трудов и опубликовал свыше 50. В Петербурге он изучил русский язык.
Э. участвовал во многих направлениях деятельности Петербургской АН. Он читал лекции студентам академического университета, участвовал в различных технических экспертизах, работал над составлением карт России, написал общедоступное «Руководство к арифметике» (нем. издание 1738-40, рус. пер. ч.1-2, 1740). По специальному поручению академии Э. подготовил к печати «Морскую науку» (ч.1-2, 1749)- фундаментальный труд по теории кораблестроения и кораблевождения.
В 1741 Э. принял предложение прусского короля Фридриха II переехать в Берлин, где предстояла реорганизация АН. В Берлинской АН Э. занял пост директора класса математики и член правления, а после смерти ее первого президента П.Л. Мопертюи несколько лет (с 1759) фактически руководил академией. За 25 лет жизни в Берлине он подготовил около 300 работ, среди них ряд больших монографий.
Живя в Берлине, Э. не переставал интенсивно работать для Петербургской АН, сохраняя звание ее почетного члена. Он вел обширную научную и научно-организационную переписку, в частности переписывался с М.В. Ломоносовым, которого высоко ценил. Э. редактировал математический отдел русского академического научного органа, где опубликовал за это время почти столько же статей, сколько в «Мемуарах» Берлинской АН. Он деятельно участвовал в подготовке русских математиков; в Берлин командировались для занятий под его руководством будущие академики С.К. Котельников, С.Я. Румовский и М. Софронов. Большую помощь Э. оказывал Петербургской АН, приобретая для нее научную литературу и оборудование, ведя переговоры с кандидатами на должности в академии и т.д.
17(28) июля 1766 Э. вместе с семьей вернулся в Петербург. Несмотря на преклонный возраст и постигшую его почти полную слепоту, он до конца жизни продуктивно работал. За 17 лет вторичного пребывания в Петербурге им было подготовлено около 400 работ, среди них несколько больших книг. Э. продолжал участвовать и в организационной работе академии. В 1776 он был одним из экспертов проекта одноарочного моста через Неву, предложенного И.П. Кулибиным,и из всей комиссии один оказал широкую поддержку проекту.
Заслуги Э. как крупнейшего ученого и организатора научных исследований получили высокую оценку еще при его жизни. Помимо Петербургской и Берлинской академий, он состоял членом крупнейших научных учреждений: Парижской АН, Лондонского королевского общества и других.
Одна из отличительных сторон творчества Э. - его исключительная продуктивность. Только при жизни Э. было опубликовано около 550 его книг и статей (список трудов Э. содержит примерно 850 назв.). В 1909 Швейцарское естественнонаучное общество приступило к изданию полного собрания сочинений Э., которое завершено в 1975; оно состоит из 72 томов. Большой интерес представляет и колоссальная научная переписка Э. (около 3000 писем), до сих пор опубликована лишь частично.
Необыкновенно широк был круг занятий Э., охватывавших все отделы современной ему математики и механики, теорию упругости, математическую физику, оптику, теорию музыки, теорию машин, баллистику, морскую науку, страховое дело и т.д. Около 3/5 работ Э. относится к математике, остальные 2/5 преимущественно к ее приложениям. Свои результаты и результаты, полученные другими, Э. систематизировал в ряде классических монографий, написанных с поразительной ясностью и снабженных ценными примерами. Таковы, например, «Механика, или Наука о движении, изложенная аналитически» (т.1-2, 1736), «Введение в анализ» (т.1-2, 1748), «Дифференциальное исчисление» (1755), «Теория движения твердого тела» (1765), «Универсальная арифметика» (т.1-2, 1768-69), выдержавшая около 30 изданий на 6 языках, «Интегральное исчисление» (т.1-3, 1768-70, т.4, 1794) и др. В 18 в., а отчасти и в 19 в. огромную популярность приобрели общедоступные «Письма о разных физических и филозофических материях, писанные к некоторой немецкой принцессе...» (ч.1-3, 1768-74), которые выдержали свыше 40 изданий на 10 языках. Большая часть содержания монографий Э. вошла затем в учебные руководства для высшей и частично средней школы. Невозможно перечислить все доныне употребляемые теоремы, методы и формулы Э., из которых только немногие фигурируют в литературе под его именем [см., например, Эйлера метод ломаных, Эйлера подстановки, Эйлера постоянная, Эйлера уравнение, Эйлера уравнения (в гидромеханике), Эйлера формулы, Эйлера функция, Эйлера числа в математике, Эйлера число, Эйлера-Маклорена формула, Эйлера-Фурье формулы, Эйлерова характеристика, Эйлеровы интегралы, Эйлеровы углы].
В «Механике» Э. впервые изложил динамику точки при помощи математического анализа. В 1-м томе этого сочинения рассмотрено свободное движение точки под действием различных сил как в пустоте, так и в среде, обладающей сопротивлением; во 2-м - движение точки по данной линии или по данной поверхности; большое значение для развития небесной механики имела глава о движении точки под действием центр. сил. В 1744 он впервые корректно сформулировал механический принцип наименьшего действия и показал его первые применения. В «Теории движения твердого тела» Э. разработал кинематику и динамику твердого тела и дал уравнения его вращения вокруг неподвижной точки, положив начало теории гироскопов. В своей теории корабля Э. внес ценный вклад в теорию устойчивости. Значительны открытия Э. в небесной механике (например, в теории движения Луны), механике сплошных сред (основные уравнения движения идеальной жидкости в форме Э. и в т.н. переменных Лагранжа, колебания газа в трубах и пр.). В оптике Э. дал (1747) формулу двояковыпуклой линзы, предложил метод расчета показателя преломления среды. Э. придерживался волновой теории света. Он считал, что различным цветам соответствуют разные длины волн света. Э. предложил способы устранения хроматических аберрации линз и в 3-й части «Диоптрики» дал методы расчета оптических узлов микроскопа. Обширный цикл работ, начатый в 1748, Э. посвятил математической физике: задачам о колебании струны, пластинки, мембраны и др. Все эти исследования стимулировали развитие теории дифференциальных уравнений, приближенных методов анализа, спец. функций, дифференциальной геометрии и т.д. Многие математические открытия Э. содержатся именно в этих работах.
Главным делом Э. как математика явилась разработка математического анализа. Он заложил основы нескольких математических дисциплин, которые только в зачаточном виде имелись или вовсе отсутствовали в исчислении бесконечно малых И. Ньютона, Г.В. Лейбница, Я. и И. Бернулли. Так, Э. первый ввел функции комплексного аргумента («Введение в анализ», т.1) и исследовал свойства основных элементарных функций комплексного переменного (показательные, логарифмические и тригонометрические функций); в частности, он вывел формулы, связывающие тригонометрические функции с показательной. Работы Э. в этом направлении положили начало теории функций комплексного переменного.
Э. явился создателем вариационного исчисления, изложенного в работе «Метод нахождения кривых линий, обладающих свойствами максимума, либо минимума...» (1744). После работ Ж. Лагранжа Э. далее развил вариационное исчисление в «Интегральном исчислении» и ряде статей. Метод, с помощью которого Э. в 1744 вывел необходимое условие экстремума функционала - уравнение Эйлера, явился прообразом прямых методов вариационного исчисления 20 в. Э. создал как самостоятельную дисциплину теорию обыкновенных дифференциальных уравнений и заложил основы теории уравнений с частными производными. Здесь ему принадлежит огромное число открытий: классический способ решения линейных уравнений с постоянными коэффициентами, метод вариации произвольных постоянных, выяснение основных свойств уравнения Риккати, интегрирование линейных уравнений с переменными коэффициентами с помощью бесконечных рядов, критерии особых решений, учение об интегрирующем множителе, различные приближенные методы и ряд приемов решения уравнений с частными производными. Значит. часть этих результатов Э. собрал в своем «Интегральном исчислении».
Э. обогатил также дифференциальное и интегральное исчисление в узком смысле слова (например, учение о замене переменных, теорема об однородных функциях, понятие двойного интеграла и вычисление многих специальных интегралов). В «Дифференциальном исчислении» Э. высказал и подкрепил примерами убеждение в целесообразности применения расходящихся рядов и предложил методы обобщенного суммирования рядов, предвосхитив идеи современной строгой теории расходящихся рядов, созданной на рубеже 19 и 20 вв. Кроме того, Э. получил в теории рядов множество конкретных результатов. Он открыл т.н. формулу суммирования Эйлера - Маклорена, предложил преобразование рядов, носящее его имя, определил суммы громадного количества рядов и ввел в математику новые важные типы рядов (например, тригонометрические ряды). Сюда же примыкают исследования Э. по теории непрерывных дробей и других бесконечных процессов.
Э. является основоположником теории специальных функций. Он первым начал рассматривать синус и косинус как функции, а не как отрезки в круге. Им получены почти все классического разложения элементарных функций в бесконечные ряды и произведения. В его трудах создана теория гамма-функции. Он исследовал свойства эллиптических интегралов, гиперболических и цилиндрических функций, дзета-функции, некоторых тета-функций, интегрального логарифма и важных классов специальных многочленов.
По замечанию П.Л. Чебышева, Э. положил начало всем изысканиям, составляющим общую часть теории чисел, к которой относится свыше 100 мемуаров Э. Так, Э. доказал ряд утверждений, высказанных П. Ферма (см., например, Ферма малая теорема), разработал основы теории степенных вычетов и теории квадратичных форм, обнаружил (но не доказал) квадратичный закон взаимности (см. Квадратичный вычет) и исследовал ряд задач диофантова анализа. В работах о разбиении чисел на слагаемые и по теории простых чисел Э. впервые использовал методы анализа, явившись тем самым создателем аналитической теории чисел. В частности, он ввел дзета-функцию и доказал т.н. тождество Э., связывающее простые числа со всеми натуральными.
Велики заслуги Э. и в других областях математики. В алгебре ему принадлежат работы о решении в радикалах уравнений высших степеней и об уравнениях с двумя неизвестными, а также т.н. тождество Э. о четырех квадратах. Э. значительно продвинул аналитическую геометрию, особенно учение о поверхностях 2-го порядка. В дифференциальной геометрии он детально исследовал свойства геодезических линий, впервые применил натуральные уравнения кривых, а главное, заложил основы теории поверхностей. Он ввел понятие главных направлений в точке поверхности, доказал их ортогональность, вывел формулу для кривизны любого нормального сечения, начал изучение развертывающихся поверхностей и т.д.; в одной посмертно опубликованной работе (1862) он частично предварил исследования К.Ф. Гаусса по внутренней геометрии поверхностей. Э. занимался и отд. вопросами топологии и доказал, например, важную теорему о выпуклых многогранниках. Э.-математика нередко характеризуют как гениального «вычислителя». Действительно, он был непревзойденным мастером формальных выкладок и преобразований, в его трудах многие математические формулы и символика получили современный вид (например, ему принадлежат обозначения для e и p). Однако Э. был не только исключительной силы «вычислителем». Он внес в науку ряд глубоких идей, которые ныне строго обоснованы и служат образцом глубины проникновения в предмет исследования.
По выражению П.С. Лапласа, Э. явился учителем математиков 2-й половины 18 в. От его работ непосредственно отправлялись в разнообразных исследованиях П.С. Лаплас, Ж.Л. Лагранж, Г. Монж,А. М. Лежандр, К.Ф. Гаусс, позднее О. Коши, М.В. Остроградский,П. Л. Чебышев и др. Русские математики высоко ценили творчество Э., а деятели чебышевской школы видели в Э. своего идейного предшественника в его постоянном чувстве конкретности, в интересе к конкретным трудным задачам, требующим развития новых методов, в стремлении получать решения задач в форме законченных алгоритмов, позволяющих находить ответ с любой требуемой степенью точности.

Эйлер, крупнейший математик XVIII в., родился в Швейцарии.
В 1727 г. по приглашению Петербургской академии наук он приехал в Россию.
В Петербурге Эйлер попал в круг выдающихся ученых: математиков, физиков, астрономов, получил большие возможности для создания и издания своих трудов.
Он работал с увлечением и вскоре стал, по единодушному признанию современников, первым математиком мира.

Научное наследие Эйлера поражает своим объемом и разносторонностью.
В списке его трудов более 800 названий. Полное собрание сочинений ученого занимает 72 тома.
Среди его работ - первые учебники по дифференциальному и интегральному исчислению.

В теории числе Эйлер продолжил деятельность французского математика П. Ферма и доказал ряд утверждений: малую теорему Ферма, великую теорему Ферма для показателей 3 и 4. Он сформулировал проблемы, которые определили горизонты теории чисел на десятилетия.

Эйлер предложил применить в теории чисел средства математического анализа и сделал первые шаги по этому пути. Он понимал, что, двигаясь дальше, можно оценить число простых чисел, не превосходящих n, и наметил утверждение, которое затем докажут в XIX в. математики П. Л. Чебышев и Ж. Адамар.

Эйлер много работает и в области математического анализа.
Ученый впервые разработал общее учение о логарифмической функции, согласно которому все комплексные числа, кроме нуля, имеют логарифмы, причем каждому числу соответствует бесчисленное множество значений логарифма. В геометрии Эйлер положил начало совершенно новой области исследований, выросшей впоследствии в самостоятельную науку - топологию.

Имя Эйлера носит формула,
связывающая число вершин (В), ребер (Р) и граней (Г) выпуклого многогранника:
В - Р + Г = 2.
Даже основные результаты научной деятельности Эйлера трудно перечислить.
Здесь и геометрия кривых и поверхностей, и первое изложение вариационного исчисления с многочисленными новыми конкретными результатами.
У него были труды по гидравлике, кораблестроению, артиллерии, геометрической оптике и даже по теории музыки.
Он впервые дает аналитическое изложение механики вместо геометрического изложения Ньютона, строит механику твердого дела, а не только материальной точки или твердой пластины.

Одно из самых замечательных достижений Эйлера связано с астрономией и небесной механикой.
Он построил точную теорию движения Луны с учетом притяжения не только Земли, но и Солнца.
Это пример решения очень трудной задачи.

Последние 17 лет жизни Эйлера были омрачены почти полной потерей зрения.
Но он продолжал творить так же интенсивно, как в молодые годы.
Только теперь он уже не писал сам, а диктовал ученикам, которые проводили за него наиболее громоздкие вычисления.
Для многих поколений математиков Эйлер был учителем.
По его математическим руководствам, книгам по механике и физике училось несколько поколений.
Основное содержание этих книг вошло и в современные учебники.

Достижения Леонарда Эйлера, великого швейцарского математика и физика изложены в этой статье.

Леонард Эйлер вклад в науку кратко

Достижения в математике получили признание еще при жизни математика. Кроме того, что он возглавлял кафедры Берлинской и Петербургской академий, Эйлер был членом Лондонского королевского общества и Парижской АН. Отличительной чертой ученого была его продуктивность. При жизни свет увидело больше 550 его статей и книг.

У Леонарда был довольно широкий круг занятий – он исследовал современную математику и механику, математическую физику, теорию упругости, оптику, теорию машин, теорию музыки, баллистику, страховое дело и морскую науку. Эйлер впервые сформулировал механический принцип малого действия и произвел его на практике. Ему принадлежит разработка динамики и кинематики твердого тела.

Леонард Эйлер что открыл?

Ученый совершил много открытий в разных областях науки. Исследуя небесную механику, он выдвинул теорию движения Луны, в области оптике Леонард сформулировал формулу двояковыпуклой линзы. Также предложил расчетный метод для вычисления показателей преломления среды. Рассчитал оптические узлы для микроскопа.

Много он уделял времени исследованиям колебания струны, мембраны и пластинки. Но главное достижение Леонардо Эйлера было совершено в области математики. Он разработал математический анализ и заложил фундамент для развития математических дисциплин. Математик был первым, кто ввел функцию комплексного аргумента и положил начало функции комплексного переменного.

Также он является создателем вариационного исчисления и вывел экстремум функционала. Ему принадлежат также следующие достижения – открытие классического способа решения линейных уравнений с постоянными коэффициентами, метода вариации произвольных, выделил основные свойства уравнения Риккати, он интегрировал линейные уравнения и создал приемы их решения, создал формулу суммирования Эйлера – Маклорена.

Эйлер является основателем теории специальных функций. Он был первым, кто стал рассматривать косинус и синус как функции и занялся исследованием свойств цилиндрических, гиперболических функций и эллиптических интегралов. Он применил впервые натуральные уравнения кривых и заложил фундамент основ теории поверхностей.

Леонард Эйлер вклад в математику отображен в его основных трудах: «Механика, или Наука о движении, изложенная аналитически», «Теория движения твёрдого тела», «Дифференциальное исчисление», «Введение в анализ», «Интегральное исчисление», «Универсальная арифметика», «Письма о разных физических и филозофических материях, писанные к некоторой немецкой принцессе…», «Механика».

Надеемся, что из этой статьи Вы узнали, каковы достижения швейцарского математика Леонарда Эйлера.

Леонард Эйлер – выдающийся математик и физик. Самое точное определение, которым можно охарактеризовать труды, созданные Эйлером, - гениальные материалы, ставшие достоянием всего человечества.
Именно по его методикам в школах и высших учебных заведениях обучают учащихся многих поколений. Леонард внёс колоссальный вклад в развитие математических и физических наук, стал основоположником основного ряда научных открытий. Благодаря своим достижениям, Эйлер являлся почетным академиком во многих странах мира.
Основным направлением Эйлера была математика, однако он работал во многих областях науки, что позволило ему оставить огромное количество важных работ в астрономии, физике, механике и нескольких видах прикладных наук. Эйлер стал не только важнейшим представителем истории в создании учебной литературы для учащихся школ и университетов, но и являлся учителем для многих выдающихся математиков нескольких поколений, которые стали последователями учений Эйлера. Многие знаменитые математики как прошлых лет, так и современности, основывали свои изучения математических наук в большей мере на работах Леонарда. Среди них такие «короли» математики, как Лаплас и Карл Фридрих Гаусс. До сих пор, после многих лет со дня смерти Эйлера, он является вдохновителем для многих учёных со всего мира при постижения новых высот в области математики и её ответвлений.
Даже в современном мире, в век высоких технологий, учебные материалы Леонарда Эйлера остаются крайне востребованными. В разделах математики широко известны такие понятия Эйлера, как:
- прямая;
- прямая в окружности;
- точка;
- теорема для многогранников;
- метод ломаных (метод решения дифференциальных уравнений);
- интеграл бета-функции и гамма-функции;
- угол (в механике – для определения движения тел);
- число (для работы в гидродинамике).
Наверно, невозможно найти хотя бы одну область в математической науке, которая не основывается на учениях такого гениального ученого, как Эйлер. Он оставил поистине значимый след в науке.
Но интересным и значимым является не только вклад Леонарда Эйлера во всевозможных научных областях. Не менее интересной была и его жизнь. Леонард родился 15 апреля 1707 г. в Базеле. Его воспитывал отец, теолог по образованию и священнослужитель по роду деятельности. Первоначальное обучение мальчик получал дома. Его отец Пауль в свое время изучал математику у Якоба Бернулли. И теперь он делился своими знаниями с сыном. Развивая в своём ребенке логическое мышление, Пауль все-таки надеялся, что Леонард в будущем продолжит его духовную карьеру. Но маленький гений был насколько увлечен точной наукой, что ни дня не проводил без того, чтобы не узнавать у отца все больше и больше об этой занимательной науке.
Однако когда пришло время начать серьёзное обучение и получить специальность, отец направил Леонарда в Базельский университет, где молодой человек стал студентом факультета искусств. Там из него должны были сделать духовного человека и направить по пути отца, пастора. Но любовь с детства к математике изменила все планы Пауля, и направила парня по другому пути – пути точных вычислений, формул и цифр. Леонард стал лучшим студентом на своем потоке, благодаря своей безупречной памяти и высоким способностям. А математические успехи юного гения заметил сам Бернулли. Он пригласил Эйлера на учёные занятия к себе домой, и эти учения стали еженедельными.
В 17 лет Леонард удостоился ученой степени магистра, за великолепное прочтение на латыни лекции о философии взглядов Ньютона и Декарда. Эйлер отметился ещё несколькими выдающимися работами, одна из которых (по физике) выиграла в конкурсе Базельского университета на должность профессора. Его труд вызвал бурю восхищений и шквал положительных отзывов. Но несмотря на высокое признание таланта молодого дарования, его посчитали слишком юным для того, чтобы занять ответственную должность профессора университета.
Вскоре, благодаря рекомендациям сыновей Бернулли, с которыми у Леонарда сложились тёплые дружеские отношения, Эйлер получил свой шанс в повышении квалификации. Его пригласили в Петербург, возглавить кафедру по физиологии. Понимая, что в родном городе он не достигнет значительных высот, Леонард принимает приглашение, покидает Швейцарию и отправляется в Петербург.
А тем временем, шло активное развитие науки в Европе. Гениальный Лейбниц представил миру проект, разработанный для создания научных академий. Узнав о разработке данного проекта, Пётр I утвердил план создания петербургской академии. В неё пригласили выдающихся профессоров. Для продвижения обучения наукам и развития российских учёных, были построены университет и гимназия при академии. Перед членами академии стояла задача составить методические пособия для начального изучения математики, механики, физики и других специальностей. Эйлер написал пособие по изучению арифметики, которое вскоре было переведено на русский язык. Эта рекомендация стала первой в российском образовании, по которой начали обучать школьников,
и она навсегда отметила Эйлера в истории как человека, внешнего колоссальный вклад в развитии общества.
Вскоре власть сменилась, вместо Петра I престол заняла Анна Иоанновна. Изменилась политика, изменились взгляды на государство, в том числе и в плане образования. В учебной академии стали видеть учреждение, приносящее большие убытки и не приносящее большой пользы для правительства. Начали ходить слухи о её закрытии.
Но несмотря на все трудности, академия выстояла и продолжала свою деятельность. Некоторые профессора ушли, побоявшись новой власти. Благодаря этому, Леонард занял освободившуюся должность профессора физики, что позволило ему к тому же получать достаточно большую заработную плату. Через пару лет, Леонард Эйлер стал академиком кафедры математики.
Помимо блистательной карьеры, у Леонарда была и счастливая жизнь. В возрасте 26 лет он женился на прекрасной и утонченной Екатерины Гзель, дочери известного живописца. День бракосочетания назначили на Новый год, и приглашенными гостями стали все работники академии. Две семьи великого Эйлера собрались для празднования двух праздников. Семья родственников и семья из академии наук. Ведь для него работа стала вторым домом, а коллеги стали близкими людьми.
Работоспособность Эйлера поражала. Он не мог жить без своей научной карьеры. Однажды он взял на разработку задание, полученное академии. Особенностью являлось то, что задание было невероятно большого объёма. На его выполнение было выделено три месяца. Однако Эйлер хотел выделиться, показать свои выдающиеся способности, и выполнил данное задание за три дня. Это вызвало бурю положительных обсуждений и восхищение талантом профессора. Но сильное перенапряжение оказало негативное влияние на организм ученого – не выдержав мощной нагрузки, Леонард ослеп на один глаз. Но Эйлер проявил стойкость и философскую мудрость, заявив, что теперь он сможет уделить больше времени своей семье и личной жизни, поскольку отныне будет меньше отвлекаться на математику.
После этого, Эйлер стал ещё более знаменит в кругу светил науки, а его грандиозная работа, лишившая его половины зрения, принесла ему поистине мировую славу. Его блестящее аналитическое изложение механики как метода движения стало открытием новой вехи в мире науки.
С совершенствованием мира, совершенствовалась и наука. Эйлер начал изучение описания физических явлений с помощью интегралов. Сложностью являлось то, что Леонард жил в Петербурге, где научная академия не считалась выдающейся и не имела должного уважения. Развитие науки ухудшилось ещё и тем, что в России был объявлен новый правитель – малолетний Иоанн. По мнению Эйлера, положение развития научных исследований стало нестабильным и не имело развитого светлого будущего. Поэтому Эйлер с радостью принял приглашение работать на Берлинскую академию. Но при этом математик дал слово не забывать Петербургскую академию, которой он отдал много лет своей жизни, и помогать по мере возможности. Через 25 лет он вернётся на российскую землю. Но пока он с семьёй, женой и детьми, переезжает в Берлин. Однако все время, которое Эйлер пребывает в Берлине, он продолжает писать работы для российской академии, редактировать новые методики русских учёных, приобретает научные российские книги, а также принимает в своём доме студентов из России, отправленных на стажировку к великому ученому. А главное – остаётся почетным членом академии Петербурга.
Вскоре выходит собрание сочинений Бернулли, которое старый профессор отправляет своему ученику в Берлин с просьбой продолжить его труды. И Эйлер не подвёл своего учителя. Несмотря на проблемы со здоровьем, он начинает активно выпускать работы, в последствии приобретавшие колоссальный успех и признание. Такими работами были:
- «Введение в анализ бесконечных»;
- «Наставления по дифференциальных исчислению»;
- «Теория движения луны»;
- «Морская наука»;
- «Письма о разных физических и философических материях».
Последняя из перечисленными работ стала очередным грандиозным прорывом Эйлера, которая была переведена на десятки языков и опубликована во множестве изданий всего мира. Помимо этого, Эйлер писал множество научных статей, которые имели большой успех.
Несмотря на свое ученое образование, профессор не стремился писать заумные статьи. Он всегда писал на языке, доступном для понимания людей любого уровня знаний. Он описывал свои работы так, словно изучал тему одновременно с читателем, начиная с открытия темы, осознания цели работы, с рассуждений, приводящих к логическому итогу. Самостоятельно пройдя путь обучения, пройдя через все его сложные этапы, Эйлер знал, что ощущают люди, которые начинают вникать в сложную структуру науки. Поэтому он старался сделать свои работы интересными и понятными.
Большим достижением стало открытие формул, определяющих критическую нагрузку при сжатии стержня. В те годы эта работа не вызвала потребности в её использовании, но спустя почти столетие, она стала необходимой при сооружении железнодорожных мостов в Англии.
Леонард выполнял огромный объем работ на основании своих открытий и расчётов. В год выходило порядка 1000 страниц его трудов. Это серьёзный масштаб даже для литературных произведений. Но то, что на этих страницах были числа и формулы в таком объёме… Гениальность профессора вызывает восхищение!
Новая императрица Екатерина II выделяла внушительные суммы для развития науки, и обратив внимание на талантливого профессора, предложила ему вернуться в Петербург и возглавить управление математическим отделением в академии. В своём предложении она указала достаточно солидный оклад, при этом отметив, что если профессору эта сумма окажется недостаточной, она готова принять его условия, лишь бы он согласился приехать в Петербург. Эйлер соглашается на это выгодное предложение, однако его не желают отпускать со службы в Берлине. После отказа нескольких его прошений, Эйлер идёт на хитрость и просто перестаёт выпускать научные работы. Это дало свои результаты, и ему наконец было разрешено уехать в Россию. По прибытии в Петербург, императрица одарила профессора всевозможными благами, в том числе выделила средства на покупку личного дома и на его комфортабельную обстановку. Первой просьбой Екатерины Великой стал проект идей, модернизирующих академию.
Активная работа и сильное напряжение окончательно лишило Леонарда Эйлера драгоценного зрения. Но даже это не остановило научного гения от совершенствования научного мира. Все его мысли, открытия, научные труды он диктует юному мальчику, который все старательно записывает на немецком языке.
Вскоре случилась страшная непредвиденная ситуация – в Петербурге возник грандиозный пожар, жертвами которого стали множества зданий. В том числе и дом профессора. Его с трудом удалось спасти. По счастью, его научные работы практически не пострадали. Сгорела только одна работа – «Новая теория движения луны». Но благодаря безупречной, феноменальной памяти, которая оставалась у Леонарда даже в преклонном возрасте, уничтоженную работу удалось восстановить.
Эйлер был вынужден переехать с семьёй в новый дом. Это вызвало у профессора, лишившегося зрения, массу неудобств, поскольку все в этом доме было ему незнакомым, и ему было сложно ориентироваться на ощупь. Вскоре в Петербург приехал выдающийся немецкий окулист, Венцель. Он намеревался вернуть великому профессору зрение. Операция, которая длилась всего несколько минут, позволила вернуть зрение Эйлеру на левый глаз. Доктор настоятельно рекомендовал Леонарду беречь глаза, избегать долгого напряжения, не писать и не читать. Но одержимая любовь профессора к науке не позволила ему придерживаться рекомендаций окулиста. Он вновь стал активно работать, что привело к страшным последствиям – он окончательно потерял зрение. К удивлению окружающих, гений с невероятным спокойствием относится ко всему произошедшему. Его научная деятельность даже возросла – ясный поток мыслей позволил ему осмыслить ещё ряд научных достижений, появляющихся на бумаге благодаря его ученикам, которые писали под диктовку.
Вскоре умерла жена Леонарда, и это стало серьёзным потрясением для него, человека, безумно привязанного к своей семье. Прожив с любимой супругой 40 лет, Эйлер уже не представлял жизни без неё. Отвлечься от горя ему помогала наука. До последних дней своей жизни Эйлер продолжал активно и продуктивно работать. Его главным помощником в написании стал старший сын, а также несколько верных учеников. Все они были глазами профессора, позволяющими представить научному миру последние мысли гения.
В 1793 году Леонард почувствовал резкое ухудшения здоровья, сильные и регулярные головные боли вызывали у него серьёзное беспокойство и уже не позволяли плодотворно работать. На одной из важных встреч с Лекселем, обсуждая открытие новой планеты Уран, Эйлер почувствовал сильное головокружение. Успев произнести слова «Я умираю», гениальный профессор потерял сознание. Позже медицинская экспертиза выяснить, что он умер от кровоизлияния в мозг.
Великий математик Леонард Эйлер был похоронен петербургском Смоленском кладбище. Мир потерял талантливого, превосходного ученого, профессора и невероятного человека. Но после себя он оставил грандиозный объем необходимых для человечества открытый.