Портал о ремонте ванной комнаты. Полезные советы

Простые и сложные высказывания. Сложные высказывания

Высказывание - более сложное образование, чем имя. При разложении высказываний на более простые части мы всегда получаем те или иные имена. Скажем, высказывание «Солнце есть звезда» включает в качестве своих частей имена «Солнце» и «звезда».

Высказывание - грамматически правильное предложение, взятое вместе с выражаемым им смыслом (содержанием) и являющееся истинным или ложным.

Понятие высказывания - одно из исходных, ключевых понятий современной логики. Как таковое оно не допускает точного определения, в равной мере приложимого в разных ее разделах.

Высказывание считается истинным, если даваемое им описание соответствует реальной ситуации, и ложным, если не соответствует ей. «Истина» и «ложь» называются «истинностными значениями высказываний».

Из отдельных высказываний разными способами можно строить новые высказывания. Например, из высказываний «Дует ветер» и «Идет дождь» можно образовать более сложные высказывания «Дует ветер и идет дождь», «Либо дует ветер, либо идет дождь», «Если идет дождь, то дует ветер» и т.п.

Высказывание называется простым, если оно не включает других высказываний в качестве своих частей.

Высказывание называется сложным, если оно получено с помощью логических связок из других более простых высказываний.

Рассмотрим наиболее важные способы построения сложных высказываний.

Отрицательное высказывание состоит из исходного высказывания и отрицания, выражаемого обычно словами «не», «неверно, что». Отрицательное высказывание является, таким образом, сложным высказыванием: оно включает в качестве своей части отличное от него высказывание. Например, отрицанием высказывания «10 - четное число» является высказывание «10 не есть четное число» (или: «Неверно, что 10 есть четное число»).

Обозначим высказывания буквами А, В, С, ... Полный смысл понятия отрицания высказывания задается условием: если высказывание А истинно, его отрицание ложно, и если А ложно, его отрицание истинно. Например, так как высказывание «1 есть целое положительное число» - истинно, его отрицание «1 не является целым положительным числом» - ложно, а так как «1 есть простое число» - ложно, его отрицание «1 не есть простое число» - истинно.

Соединение двух высказываний при помощи слова «и» дает сложное высказывание, называемоеконъюнкцией. Высказывания, соединяемые таким образом, называются «членами конъюнкции».

Например, если высказывания «Сегодня жарко» и «Вчера было холодно» соединить таким способом, получится конъюнкция «Сегодня жарко и вчера было холодно».

Конъюнкция истинна только в случае, когда оба входящих в нее высказывания являются истинными; если хотя бы один из ее членов ложен, то и вся конъюнкция ложна.

В обычном языке два высказывания соединяются союзом «и», когда они связаны между собой по содержанию или смыслу. Характер этой связи не вполне ясен, но понятно, что мы не рассматривали бы конъюнкцию «Он шел в пальто, и я шел в университет» как выражение, имеющее смысл и способное быть истинным или ложным. Хотя высказывания «2 - простое число» и «Москва - большой город» истинны, мы не склонны считать истинной также их конъюнкцию «2 - простое число и Москва - большой город», поскольку составляющие се высказывания не связаны между собой по смыслу. Упрощая значение конъюнкции и других логических связок и отказываясь для этого от неясного понятия «связь высказываний по смыслу», логика делает значение этих связок одновременно и более широким, и более определенным.

Соединение двух высказываний с помощью слова «или» дает дизъюнкцию этих высказываний. Высказывания, образующие дизъюнкцию, называются «членами дизъюнкции».

Слово «или» в повседневном языке имеет два разных смысла. Иногда оно означает «одно или другое или оба», а иногда «одно или другое, но не оба вместе». Например, высказывание «В этом сезоне я хочу пойти на «Пиковую даму» или на «Аиду» допускает возможность двукратного посещения онеры. В высказывании же «Он учится в Московском или в Ярославском университете» подразумевается, что упоминаемый человек учится только в одном из этих университетов.

Первый смысл «или» называется неисключающим. Взятая в этом смысле дизъюнкция двух высказываний означает, что, по крайней мере, одно из этих высказываний истинно, независимо от того, истинны они оба или пет. Взятая во втором, исключающему или строгом, смысле дизъюнкция двух высказываний утверждает, что одно из высказываний истинно, а второе - ложно.

Неисключающая дизъюнкция истинна, когда хотя бы одно из входящих в нее высказываний истинно, и ложна, только когда оба ее члена ложны.

Исключающая дизъюнкция истинна, когда истинным является только один из ее членов, и она ложна, когда оба ее члена истинны или оба ложны.

В логике и математике слово «или» почти всегда употреб***яется в неисключающем значении.

Условное высказывание - сложное высказывание, формулируемое обычно с помощью связки «если..., то...» и устанавливающее, что одно событие, состояние и т.п. является в том или ином смысле основанием или условием для другого.

Например: «Если есть огонь, то есть дым», «Если число делится на 9, оно делится на 3» и т.п.

Условное высказывание слагается из двух более простых высказываний. То из них, которому предпослано слово «если», называется основанием, или антецедентом (предыдущим), высказывание, идущее после слова «то», называется следствием, или консеквентом (последующим).

Утверждая условное высказывание, мы прежде всего имеем в виду, что не может быть так, чтобы то, о чем говорится в его основании, имело место, а то, о чем говорится в следствии, отсутствовало. Иными словами, не может случиться, чтобы антецедент был истинным, а консеквент - ложным.

В терминах условного высказывания обычно определяются понятия достаточного и необходимого условия: антецедент (основание) есть достаточное условие для консеквента (следствия), а консеквент - необходимое условие для антецедента. Например, истинность условного высказывания «Если выбор рационален, то выбирается лучшая из имеющихся альтернатив» означает, что рациональность - достаточное основание для избрания лучшей из имеющихся возможностей и что выбор такой возможности есть необходимое условие его рациональности.

Типичной функцией условного высказывания является обоснование одного высказывания ссылкой на другое высказывание. Например, то, что серебро электропроводно, можно обосновать ссылкой на то, что оно металл: «Если серебро - металл, оно электропроводно».

Выражаемую условным высказыванием связь обосновывающего и обосновываемого (основания и следствия) трудно охарактеризовать в общем виде, и только иногда природа се относительно ясна. Эта связь может быть, во-первых, связью логического следования, имеющей место между посылками и заключением правильного умозаключения («Если все живые многоклеточные существа смертны, а медуза является таким существом, то она смертна»); во-вторых, законом природы («Если тело подвергнуть трению, оно начнет нагреваться»); в-третьих, причинной связью («Если Луна в новолуние находится в узле своей орбиты, наступает солнечное затмение»); в-четвертых, социальной закономерностью, правилом, традицией и т.п. («Если меняется общество, меняется и человек», «Если совет разумен, он должен быть выполнен»).

Со связью, выражаемой условным высказыванием, обычно соединяется убеждение, что следствие с определенной необходимостью «вытекает» из основания и что имеется некоторый общий закон, сумев сформулировать который, мы могли бы логически вывести следствие из основания.

Например, условное высказывание «Если висмут - металлом пластичен» как бы предполагает общий закон "Нес металлы пластичны», делающий консеквент данного высказывания логическим следствием его антецедента.

И в обычном языке, и в языке науки условное высказывание кроме функции обоснования может выполнять также ряд других задач: формулировать условие, не связанное с каким-либо подразумеваемым общим законом или правилом («Если захочу, разрежу свой плащ»); фиксировать какую-либо последовательность («Если прошлое лето было сухим, то в этом году оно дождливое»); выражать в своеобразной форме неверие («Если вы решите эту задачу, я докажу великую теорему Ферма»); противопоставление («Если в огороде растет бузина, то в Киеве живет дядька») и т.п. Многочисленность и разнородность функций условного высказывания существенно затрудняет его анализ.

Употребление условного высказывания связано с определенными психологическими факторами. Так, обычно мы формулируем такое высказывание, только если не знаем с определенностью, истинны или нет его антецедент и консеквент. В противном случае его употребление кажется неестественным («Если вата - металл, она электропровод на»).

Условное высказывание находит очень широкое применение во всех сферах рассуждения. В логике оно представляется, как правило, посредством импликативного высказывания, или импликации. При этом логика проясняет, систематизирует и упрощает употребление «если..., то...», освобождает его от влияния психологических факторов.

Логика отвлекается, в частности, от того, что характерная для условного высказывания связь основания и следствия в зависимости от контекста может выражаться с помощью нс только «если..., то...», но и других языковых средств. Например, «Так как вода жидкость, она передает давление во все стороны равномерно», «Хотя пластилин и не металл, он пластичен», «Если бы дерево было металлом, оно было бы электропроводным» и т.п. Эти и подобные им высказывания представляются в языке логики посредством импликации, хотя употребление в них «если..., то...» было бы не совсем естественным.

Утверждая импликацию, мы утверждаем, что не может случиться, чтобы ее основание имело место, а следствие - отсутствовало. Иными словами, импликация является ложной только в том случае, когда се основание истинно, а следствие ложно.

Это определение предполагает, как и предыдущие определения связок, что всякое высказывание является либо истинным, либо ложным и что истинностное значение сложного высказывания зависит только от истинностных значений составляющих его высказываний и от способа их связи.

Импликация истинна, когда и ее основание, и ее следствие истинны или ложны; она истинна, если ее основание ложно, а следствие истинно. Только в четвертом случае, когда основание истинно, а следствие ложно, импликация ложна.

Импликацией не предполагается, что высказывания А и В как-то связаны между собой по содержанию. В случае истинности В высказывание «если А, то В» истинно независимо от того, являетсяА истинным или ложным и связано оно по смыслу с В или нет.

Например, истинным считаются высказывания: «Если на Солнце есть жизнь, то дважды два равно четыре», «Если Волга - озеро, то Токио - большая деревня» и т.п. Условное высказывание истинно также тогда, когда А ложно, и при этом опять-таки безразлично, истинно В или нет и связано оно по содержанию с А или нет. К истинным относятся высказывания: «Если Солнце - куб, то Земля - треугольник», «Если дважды два равно пять, то Токио - маленький город» и т.п.

В обычном рассуждении все эти высказывания вряд ли будут рассматриваться как имеющие смысл и еще в меньшей степени как истинные.

Хотя импликация полезна для многих целей, она не совсем согласуется с обычным пониманием условной связи. Импликация охватывает многие важные черты логического поведения условного высказывания, но она не является вместе с тем достаточно адекватным его описанием.

В последние полвека были предприняты энергичные попытки реформировать теорию импликации. При этом речь шла не об отказе от описанного понятия импликации, а о введении наряду с ним другого понятия, учитывающего не только истинностные значения высказываний, но и связь их по содержанию.

С импликацией тесно связана эквивалентность, называемая иногда «двойной импликацией».

Эквивалентность - сложное высказывание «Л, если и только если В», образованное из высказываний Ли В и разлагающееся на две импликации: «если А, то В», и «если В, то А». Например: «Треугольник является равносторонним, если и только если он является равноугольным». Термином «эквивалентность» обозначается и связка «..., если и только если...», с помощью которой из двух высказываний образуется данное сложное высказывание. Вместо «если и только если» для этой цели могут использоваться «в том и только в том случае, когда», «тогда и только тогда, когда» и т.п.

Если логические связки определяются в терминах истины и лжи, эквивалентность истинна тогда и только тогда, когда оба составляющих ее высказывания имеют одно и то же истинностное значение, т.е. когда они оба истинны или оба ложны. Соответственно эквивалентность является ложной, когда одно из входящих в нее высказываний истинно, а другое ложно.

Простые и сложные высказывания. Отрицание высказывания

Математическая логика, основы которой были заложены Г.Лейбницем еще в XVII веке, сформировалась как научная дисциплина только в середине XIX века благодаря работам математиков Дж. Буля и О. Моргана, которые создали алгебру логики.

1. Высказыванием называется любое повествовательное предложение, относительно которого известно, что оно либо истинно, либо ложно. Высказывания могут быть выражены с помощью слов, а также математических, химических и прочих знаков. Приведем примеры:

б) 2+6>8 (ложное высказывание),

в) сумма чисел 2 и 6 больше числа 8 (ложное высказывание);

г)II + VI > VII(истинное высказывание);

д) в пределах нашей Галактики существуют внеземные цивилизации (это высказывание, несомненно, либо истинно, либо ложно, но пока неизвестно, какая из этих возможностей выполняется).

Ясно, что высказывания б) и в) означают одно и то же, но выражены они по-разному. Вообще высказывания будем записывать так: а:(Луна - спутник Земли); b:(существует такое действительное число х, что 2х+5=15); с:(все треугольники – равнобедренные).

Не всякое предложение является высказыванием. Например, восклица­тельные и вопросительные предложения высказываниями не являются ("Какого цвета этот дом?", "Пейте томатный сок!", "Стой!" и т.д.). Не являются высказы­ваниями и определения, например, "Назовем медианой отрезок, соединяющий вершину треугольника с серединой противоположной стороны". Здесь лишь устанавливается название некоторого объекта. Таким образом, определения, но могут быть истинными или ложными, они лишь фиксируют принятое использование терминов. Не являются высказываниями и предложения "Он сероглаз" или "х 2 - 4х + 3 = 0" - в них не указано, о каком человеке идет речь или при каких х рассматривают равенство. Такие предложения с неизвестным членом (переменной) называют неопределенными высказываниями . Отметим, что предложение "Некоторые люди сероглазы" или ""Для всех х справедливо равенство х 2 - 4х + 3 = 0" уже являются высказыванием (первое из них истинно, а второе ложно).

2. Высказывание, которое можно разложить на части, будем называть сложным, а неразложимое далее высказывание - простым. Например, высказывание "Сегодня в 4 часа дня я был в школе, а к 6 часам вечера пошел на каток" состоит из двух частей" "Сегодня в 4 часа дня я был в школе" и "Сегодня к 6 часам вечера я пошел на каток". Или такое высказывание: "функция у = ax 2 + bx + с непрерывна и дифференцируема при всех значениях х" состоит из двух простых высказываний: "Функция у = ах 2 + bx + с непрерывна при всех значениях х" и "функция у = ах 2 + bx + с дифференцируема при всех значениях х".

Подобно тому, как из заданных чисел можно получить другие числа с помощью операций сложения, вычитания, умножения и деления, так из заданных высказываний получаются новые с помощью операций, имеющие специальные названия: конъюнкция, дизъюнкция, импликация, эквивалент­ность, отрицание. Хотя названия эти звучат непривычно, они означают лишь хорошо известные соединения отдельных предложений связками "и", "или", "если…то…", "тогда и только тогда, когда…", а также присоединение к высказыванию частицы "не",

3. Отрицанием высказывания а называют такое высказывание а, что а ложно, если а истинно, и а истинно, если а ложно. Обозначение а читается так: "Не а", или "Неверно, что а". Попробуем это определение понять на примерах. Рассмотрим следующие высказывания:

а:(Сегодня в 12 часов дня я был на катке);

b:(Сегодня я был на катке не в 12 часов дня);

с:(Я был на катке в 12 часов дня не сегодня);

d:(Сегодня в 12 часов дня я был в школе);

е:(Сегодня я был на катке в 3 часа дня);

f:(Сегодня в 12 часов дня я не был на катке);

На первый взгляд все высказывания b - f отрицают высказывание а. Но на самом деле это не так. Если внимательно вчитаться в смысл высказывания b, то можно заметить, что оба высказывания а и b могут одновременно оказаться ложными - так будет, если сегодня я совсем не был на катке. То же самое относится и к высказываниям а и с, а и а. А высказывания а и е могут оказаться и одновременно истинными (если, например, я катался на коньках с 11 до 4 часов дня), и одновременно ложными (если сегодня я совсем не был на катке). И только высказывание f обладает следующим свойством: оно истинно в том случае, когда высказывание а ложно, и ложно в том случае, когда высказывание а истинно. Значит, высказывание f есть отрицание высказывания а, то есть f = а. Следующая таблица показывает связь между высказываниями а и ;

Буквы "и" и "л" - сокращение слов "истина" и "ложь" соответственно. Эти слова в логике называют значениями истинности. Таблица называется таблицей истинности .

Мы очень любим мудрые высказывания великих людей. Тех, чьи имена золотыми буквами вписаны в историю мира. Но и обычные люди, наши с вами друзья, приятели, однокашники, иной раз такое «отмочат» - хоть стой, хоть падай. На этой странице мы собрали для вас этакий микс самых, на наш взгляд, интересных высказываний о жизни, судьбе, любви. Креативных, юморных, мудрых, впечатляющих, трогательных, цепляющих за душу, позитивных… на любой цвет и вкус)

1. Про работу и зарплату

2. Про ложь и правду

У лжи… широкая дорога… У правды… узкая тропа… Ложь… языков имеет много… А правда… на слова скупа… Ложь… это скользкие слова… но заползут в любые уши… А правда… тонкая струна… но пробивается сквозь души!!!

3. Неисповедимы Пути Господни…

Бог не дает вам людей, которых вы хотите. Он дает вам людей, в которых вы нуждаетесь. Они причиняют вам боль, любят, учат вас, ломают вас, чтобы превратить вас в того, кем вы должны быть.

4. Классно!!!

Как классно! На работу только через 20 лет!)

5. Система расчёта…

Это только кажется, что за всё платят деньгами. За всё действительно важное платят кусочками души…

6. Во всём нужно видеть позитив)

Если судьба подкинула тебе кислый лимон - подумай, где достать текилу и отлично повеселиться.

7. От Эрих Мария Ремарк

Кто хочет удержать - тот теряет. Кто готов с улыбкой отпустить - того стараются удержать.

8. Разница между собакой и человеком…

Если ты подберешь голодную собаку и сделаешь ее жизнь сытой, она никогда не укусит тебя. В этом принципиальная разница между собакой и человеком.


9. Только ТАК!

10. Дорога судьбы

Каждый человек в своей жизни должен пройти через это. Разбить чужое сердце. Разбить свое. И потом научиться бережно относиться и к своему, и к чужому сердцу.

11. В чём сила характера?

Сила характера не в умении пробивать стены, а в умении находить двери.

12. Ваш малыш развивается хорошо)

Девочки, счастье это не затяжка сигареты и глоток пива, счастье - это когда ты приходишь к врачу и тебе говорят: “Ваш малыш развивается хорошо, отклонений нет!”

13. От матери Терезы, жизненно важная мысль…

Для создания семьи достаточно полюбить. А для сохранения - нужно научиться терпеть и прощать.

14. Показалось)

В детстве казалось, что после тридцати - это старость… Слава Богу показалось!

15. Отделяйте зёрна от плевел…

Учитесь отличать важное и второстепенное. Высшее образование – не показатель ума. Красивые слова – не показатель любви. Красивая внешность – не показатель красивого человека. Учитесь ценить душу, верить поступкам, смотреть на дела.

16. От великой Фаины Раневской

Берегите своих любимых женщин. Ведь пока она ругает, переживает и психует - она любит, но как только начнет улыбаться и равнодушно относиться - ты её потерял.

17. Про детей…

Решиться обзавестись ребёнком - дело нешуточное. Это значит решиться на то, чтобы отныне и навсегда твоё сердце разгуливало вне твоего тела.

18. Очень мудрая португальская пословица

Шалаш, где смеются, дороже дворца, где плачут.

19. Выслушать…

В жизни нужно иметь один важный принцип - всегда брать трубку, если тебе звонит близкий человек. Даже если ты на него обижен, даже если не хочешь разговаривать, и уже тем более если ты просто хочешь проучить. Нужно обязательно взять трубку и выслушать то, что он хочет тебе сказать. Возможно, это будет что-то по-настоящему важное. А жизнь слишком непредсказуема, и кто знает, услышишь ли ты еще когда-то этого человека вновь.

20. Всё можно пережить

Всё можно пережить в этой жизни, пока есть для чего жить, кого любить, о ком заботиться и кому верить.

21. Ошибки… у кого их не бывает?

Твои ошибки, твоя сила. На кривых корнях, деревья стоят крепче.

22. Простая молитва

Мой Ангел-Хранитель… я снова устала… Дай руку, прошу, и крылом обними… Держи меня крепче, чтоб я не упала… А если споткнусь, Ты меня подними…

23. От великолепной Мерлин Монро)

Характер у меня конечно не ангельский, не всякий выдержит. Ну так извините… и я не для всякого!

24. Общайтесь…

Глупо не общаться с человеком, который тебе дорог. И неважно, что случилось. Его в любой момент может не стать. Представляешь? Навсегда. И ничего не вернёшь.

25. Жизненное измерение

Вы не можете ничего поделать с длиной своей жизни, но можете многое с её шириной и глубиной.

Высказывания отрицания

Среди высказываний отрицания различают высказывания с внешним и внутренним отрицанием. В зависимости от задач исследования высказывание отрицания можно рассматривать или как простое, или как сложное высказывание.

При рассмотрении высказывания отрицания как простого высказывания важной задачей является определение правильной логической формы высказывания:

Простое высказывание, содержащее внутреннее отрицание, принято относить к отрицательным высказываниям (см. «Виды атрибутивных высказывания по качеству»). Например: «Некоторые жители Республики Беларусь не пользуются банковскими кредитами», «Ни один заяц не является хищником»;

Правильной логической формой простого высказывания с внешним отрицанием является противоречащее данному высказывание (см. «Логические отношения между высказываниями. Логический квадрат»). Например: высказыванию «Не все люди жадные» соответствует высказывание «Некоторые люди не являются жадными ».

Рассматривая высказывание отрицания как сложное высказывание, необходимо определить его логическое значение.

Исходное высказывание: Солнце светит (р).

Высказывание отрицания: Солнце не светит (┐р).

Высказывание двойного отрицания: Неверно, что солнце не светит (┐┐р).

р ┐р ┐┐р
И Л И
Л И Л
Рис. 16

Высказывание отрицание истинно лишь тогда, когда исходное высказывание ложно, и наоборот. С высказыванием отрицания связан закон двойного отрицания: двойное отрицание произвольного высказывания равносильно самому этому высказыванию. Условия истинности высказывания отрицания изображены на рис. 16.

Сложным считается высказывание, состоящее из нескольких простых высказываний, соединенных при помощи логических союзов «и», «или», «если…, то…» и т. д. К сложным высказываниям относят соединительные, разделительные, условные, эквивалентные высказывания, а также высказывания отрицания.

Соединительное высказывание (конъюнкция) – это сложное высказывание, состоящее из простых, соединенных при помощи логической связки «и». Логический союз «и» (конъюнкция) может выражаться в естественном языке грамматическими союзами «и», «но», «однако», «а также» и т. д. Например: «Набежали тучи, и пошел дождь», «И большие и малые радуются хорошему дню» . На символическом языке логики данные высказывания записываются следующим образом: p∧q . Конъюнкция истинна лишь тогда, когда истинны все ее составляющие простые высказывания (рис. 17).



Разделительное высказывание (дизъюнкция). Различают слабую и сильную дизъюнкцию. Слабой дизъюнкции соответствует употребление союза «или» в соединительно-разделительном смысле (или то, или другое, или то и другое вместе). Например: «Этот студент спортсмен или отличник» (p⋁q ), «Наследственные факторы, плохая экология и вредные привычки являются причинами большинства заболеваний» (p⋁q⋁r ). Слабая дизъюнкция истинна тогда, когда истинно хотя бы одно из входящих в ее состав простых высказываний (см. рис. 17).

Сильной дизъюнкции соответствует употребление союза «либо» в исключающе-разделительном смысле (либо то, либо другое, но не то и другое вместе). Например: «Вечером я буду на занятиях или пойду на дискотеку», «Человек либо жив, либо мертв» . Символическая запись p⊻q . Сильная дизъюнкция истинна тогда, когда истинно только одно из входящих в ее состав простых высказываний (см. рис. 17).

Условное высказывание (импликация) – это сложное высказывание, состоящее из двух частей, соединенных с помощью логического союза «если…, то…». Высказывание, стоящее после частицы «если», называют основанием, а высказывание, стоящее после «то» – следствием. При логическом анализе условных высказываний основание импликации всегда ставится вначале. В естественном языке это правило часто не соблюдается. Пример условного высказывания: «Если ласточки низко летают, то будет дождь» (p→q ). Импликация ложна лишь в одном случае, когда ее основание истинно, а следствие – ложно (см. рис. 17).

Эквивалентное высказывание – это высказывание, состоящее из простых, соединенных с помощью логического союза «тогда и только тогда, когда» («если и только если…, то…). В эквивалентном высказывании подразумевается одновременное наличие или отсутствие двух ситуаций. В естественном языке эквиваленция может выражаться грамматическими союзами «если…, то…», «лишь в том случае, когда…» и т. д. Например: «Наша команда выиграет лишь в том случае, если хорошо подготовится » (p↔q ). Эквивалентное высказывание будет истинным тогда, когда составляющие его высказывания являются либо одновременно истинными, либо одновременно ложными (см. рис. 17).

Для формализации рассуждения необходимо:

1) найти и обозначить малыми согласными буквами латинского алфавита простые высказывания, входящие в состав сложного. Переменные присваиваются произвольно, но если одно и то же простое высказывание встречается несколько раз, то столько же раз используется соответствующая переменная;

2) найти и обозначить логическими константами логические союзы (∧, ⋁, ⊻, →. ↔, ┐);

3) в случае необходимости расставить технические знаки [...], (...).

На рис. 18 изображен пример формализации сложного высказывания.

Я уже освободился (p) и (∧) , если меня не задержат (┐q ) или (⋁)не сломается автомобиль (┐r), то(→) я скоро приеду (s) .

p ∧ ((┐q ⋁ ┐r) → s

Рис. 18

После того как высказывание записано в символическом виде, можно определить тип формулы. В логике различают тождественно-истинные, тождественно-ложные и нейтральные формулы. Тождественно-истинные формулы независимо от значений входящих в их состав переменных всегда принимают значение «истина», а тождественно-ложные – значение «ложно». Нейтральные формулы принимают как значение «истина», так и значение «ложно».


Для определения типа формулы используется табличный способ, сокращенный способ проверки формулы на истинность методом «сведения к абсурду» и приведение формулы к нормальной форме. Нормальной формой некоторой формулы является такое ее выражение, которое соответствует следующим условиям:

Не содержит знаков импликации, эквиваленции, строгой дизъюнкции и двойного отрицания;

Знаки отрицания находятся только при переменных.

Табличный способ определения типа формулы:

1. Строят столбцы входных значений для каждой из имеющихся переменных. Эти столбцы называют свободными (независимыми), в них учитывают все возможные комбинации значений переменных. Если в формуле две переменные, то строят два свободных столбца, если же три переменные, то три столбца и т. д.

2. Для каждой подформулы, то есть части формулы, содержащей хотя бы один союз, строят столбец ее значений. При этом учитываются значения свободных столбцов и особенности логического союза (см. рис. 17).

3. Строят столбец выходных значений для всей формулы в целом. По значениям, полученным в выходном столбце, определяют тип формулы. Так, если в выходном столбце имеется только значение «истина», то формула будет относиться к тождественно-истинным и т.д.

Таблица истинности для формулы (p ^ q) → r
p q r p ^ q (p ^ q) → r
И И И И И
Л И Л Л И
Л Л И Л И
И Л Л Л И
И И Л И Л
И Л И Л И
Л И И Л И
Л Л Л Л И
Рис. 19

Число столбцов в таблице равняется сумме переменных, входящих в формулу, и имеющихся в ней союзов. (Например: в формуле на рис. 18 четыре переменных и пять союзов, следовательно, в таблице будет девять столбцов).

Количество строк в таблице вычисляется по формуле С = 2 n , где n – количество переменных. (В таблице по формуле на рис. 18 должно быть шестнадцать строк.)

На рис. 19 изображен пример таблицы истинности.


Сокращенный способ проверки формулы на истинность методом сведения к абсурду:

((p⋁q)⋁r)→(p⋁(q⋁r))

1. Предположим, что данная формула не является тождественно-истинной. Следовательно, при некотором наборе значений она принимает значение «ложно».

2. Данная формула может принимать значение «ложно» только в том случае, если основание импликации (p⋁q)⋁r будет «истинно», а следствие p⋁(q⋁r) – «ложно».

3. Следствие импликации p⋁(q⋁r) будет ложным в том случае, когда р – «ложно» и q⋁r – «ложно» (см. значение слабой дизъюнкции на рис. 17).

4. Если q⋁r – «ложно», то и q и r – «ложно».

5. Мы установили что р – «ложно», q – «ложно» и r – «ложно». Основание импликации (p⋁q)⋁r представляет собой слабую дизъюнкцию этих переменных. Так как слабая дизъюнкция принимает значение «ложно» тогда, когда ложными являются все ее составляющие, то основание импликации (p⋁q)⋁r тоже будет «ложным».

6. В п. 2 установили, что основание импликации (p⋁q)⋁r – «истинно», а в п. 5 что оно является «ложным». Возникшее противоречие свидетельствует о том, что предположение, сделанное нами в п. 1, ошибочно.

7. Так как данная формула ни при каком наборе значений своих переменных не принимает значение «ложно», то она является тождественно-истинной.

3.8. Логические отношения между высказываниями
(логический квадрат)

Между высказываниями, имеющими сходный смысл, устанавливаются связи. Рассмотрим отношения между простыми и сложными высказываниями.

В логике всю совокупность высказываний разделяют на сравнимые и несравнимые. Несравнимыми среди простых высказываний являются высказывания, имеющие различные субъекты или предикаты. Например: «Все студенты – учащиеся» и «Некоторые студенты – отличники» .

Сравнимыми являются высказывания с одинаковыми субъектами и предикатами и различающиеся связкой и квантором. Например: «Все граждане Республики Беларусь имеют право на отдых» и «Ни один гражданин Республики Беларусь не имеет право на отдых».

Рис. 20
Отношения между сравнимыми высказываниями выражаются с помощью модели, которую называют логический квадрат (рис. 20).

Среди сравнимых высказываний различают совместимые и несовместимые.

Отношение совместимости

1. Эквивалентность (полная совместимость) – высказывания, которые имеют одинаковые логические характеристики: одинаковые субъекты и предикаты, однотипную утвердительную или отрицательную связку, одну и ту же логическую характеристику. Эквивалентные высказывания различаются словесным выражением одной и той же мысли. С помощью логического квадрата отношения между данными высказываниями не иллюстрируются.

2. Частичная совместимость (подпротивность, субконтрарность ). В этом отношении находятся частноутвердительное и частноотрицательное высказывания (I и О). Это означает, что два таких высказывания могут быть одновременно истинными, но не могут быть одновременно ложными. Если одно из них ложно, то второе обязательно истинно. Если же одно из них истинно, то второе неопределенно.

3. Подчинение (субординация ). В этом отношении находятся общеутвердительное и частноутвердительное высказывания (А и I), а также общеотрицательное и частноотрицательное высказывания (Е и О).

Из истинности общего высказывания всегда следует истинность частного. В то время как истинность частного высказывания свидетельствует о неопределенности общего высказывания.

Из ложности частного высказывания всегда следует ложность общего высказывания, но не наоборот.


Отношение несовместимости. Несовместимыми являются высказывания, которые не могут быть одновременно истинными:

1. Противоположность (противность, контрарность) – в этом отношении находятся общеутвердительное и общеотрицательное высказывания (А и Е). Это отношение означает, что два таких высказывания не могут быть одновременно истинными, но могут быть одновременно ложными. Если одно из них истинно, то второе обязательно – ложно. Если же одно из них ложно, то второе неопределенно.

2. Противоречие (контрадикторность) – в нем находятся обще-утвердительное и частноотрицательное высказывания (A и О), а также общеотрицательное и частноутвердительное высказывания (Е и I). Два противоречащих высказывания не могут быть ни одновременно ложными, ни одновременно истинными. Одно обязательно истинно, а другое ложно.

Сравнимыми среди сложных высказываний являются высказывания, имеющие хотя бы одну одинаковую составляющую. В противном случае сложные высказывания несравнимы.

Сравнимые сложные высказывания могут быть совместимыми или несовместимыми.

Отношение совместимости означает, что высказывания могут быть одновременно истинными:

2. Частичная совместимость означает, что высказывания могут быть одновременно истинными, но не могут быть одновременно ложными (рис. 22).
p q p→q q→p
И И И И
И Л Л И
Л И И Л
Л Л И И
Рис. 22

3. Отношение следования (подчинения ) означает, что из истинности одного высказывания следует истинность другого, но не наоборот (рис. 23).
p q r (p→q)∧(q→r) p↔r
И И И И И
И И Л Л Л
И Л И Л И
Л И И И И
И Л Л Л Л
Л И Л Л И
Л Л И И И
Л Л Л И И
Рис. 23
4. Отношение сцепления означает, что истинность (ложность) одного высказывания не исключает ложности (истинности) другого (рис. 24).
p q p→q ┐p→q
И И И И
И Л Л И
Л И И И
Л Л И Л
Рис. 24

Отношение несовместимости означает, что высказывания не могут быть одновременно истинными:

2. Противоречие – отношение между высказываниями, которые не могут быть ни одновременно истинными, ни одновременно ложными (рис. 26).
p q p→q p∧┐q
И И И Л
И Л Л И
Л И И Л
Л Л И Л
Рис. 26

Логика высказываний , называемая также пропозициональной логикой - раздел математики и логики, изучающий логические формы сложных высказываний, построенных из простых или элементарных высказываний с помощью логических операций.

Логика высказываний отвлекается от содержательной нагрузки высказываний и изучает их истинностное значение, то есть является ли высказывание истинным или ложным.

Рисунок сверху - иллюстрация явления, известного как "Парадокс лжеца". При этом, на взгляд автора проекта, такие парадоксы возможны только в средах, несвободных от политических заморочек, где на ком-то могут априори поставить клеймо лжеца. В естественном многослойном мире на предмет "истины" или "лжи" оцениваются только отдельно взятые высказывания . И далее на этом уроке вам представится возможность самим оценить на этот предмет немало высказываний (а затем посмотреть правильные ответы). В том числе сложных высказываний, в которых более простые связаны между собой знаками логических операций. Но прежде рассмотрим сами эти операции над высказываниями.

Логика высказываний применяется в информатике и программировании в виде объявления логических переменных и присвоения им логических значений "ложь" или "истина", от которых зависит ход дальнейшего исполнения программы. В небольших программах, где задействована лишь одна логическая переменная, этой логической переменной часто даётся имя, например, "флаг" ("flag") и подразумевается, что "флаг поднят", когда значение этой переменной - "истина" и "флаг опущен", когда значение этой переменной - "ложь". В программах большого объёма, в которых несколько или даже очень много логических переменных, от профессионалов требуется придумывать имена логических переменных, имеющих форму высказываний и смысловую нагрузку, отличающую их от других логических переменных и понятных другим профессионалам, которые будут читать текст этой программы.

Так, может быть объявлена логическая переменная с именем "ПользовательЗарегистрирован" (или его англоязычный аналог), имеющая форму высказывания, которой может быть присвоено логическое значение "истина" при выполнении условий, что данные для регистрации отправлены пользователем и эти данные программой признаны годными. В дальнейших вычислениях значения переменных могут меняться в зависимости от того, какое логическое значение ("истина" или "ложь") имеет переменная "ПользовательЗарегистрирован". В других случах переменной, например, с именем "ДоДняХОсталосьБолееТрёхДней", может быть присвоено значение "Истина" до некоторого блока вычислений, а в ходе дальнейшего исполнения программы это значение может сохраняться или меняться на "ложь" и от значения этой переменной зависит ход дальнейшего исполнения программы.

Если в программе используются несколько логических переменных, имена которых имеют форму высказываний, и из них строятся более сложные высказывания, то намного проще разрабатывать программу, если перед её разработкой записать все операции с высказываний в виде формул, применяемых в логике высказываний, чем мы в ходе этого урока и займёмся.

Логические операции над высказываниями

Для математических высказываний всегда можно сделать выбор между двумя различными альтернативами "истина" и "ложь", а для высказываний, сделанных на "словесном" языке, понятия "истинности" и "ложности" несколько более расплывчаты. Однако, например, такие словесные формы, как "Иди домой" и "Идёт ли дождь?", не являются высказываниями. Поэтому понятно, что высказываниями являются такие словесные формы, в которых что-либо утверждается . Не являются высказываниями вопросительные или восклицательные предложения, обращения, а также пожелания или требования. Их невозможно оценить значениями "истина" и "ложь".

Высказывания же, напротив, можно рассмотривать как величину, которая может принимать два значения: "истина" и "ложь".

Например, даны суждения: "собака - животное", "Париж - столица Италии", "3

Первое из этих высказываний может быть оценено символом "истина", второе - "ложь", третье - "истина" и четвёртое - "ложь". Такая трактовка высказываний составляет предмет алгебры высказываний. Будем обозначать высказывания большими латинскими буквами A , B , ..., а их значения, то есть истину и ложь, соответственно И и Л . В обычной речи употребляются связи между высказываниями "и", "или" и другие.

Эти связи позволяют, соединяя между собой различные высказывания, образовывать новые высказывания - сложные высказывания . Например, связка "и". Пусть даны высказывания: "π больше 3" и высказывание "π меньше 4". Можно организовывать новое - сложное высказывание "π больше 3 и π меньше 4". Высказывание "если π иррационально, то π ² тоже иррационально" получается связыванием двух высказываний связкой "если - то". Наконец, мы можем получить из какого-либо высказывания новое - сложное высказывание - отрицая первоначальное высказывание.

Рассматривая высказывания как величины, принимающие значения И и Л , мы определим далее логические операции над высказываниями , которые позволяют из данных высказываний получать новые - сложные высказывания.

Пусть даны два произвольных высказывания A и B .

1 . Первая логическая операция над этими высказываниями - конъюнкция - представляет собой образование нового высказывания, которое будем обозначать A B и которое истинно тогда и только тогда, когда A и B истинны. В обычной речи этой операции соответствует соединение высказываний связкой "и".

Таблица истинности для конъюнкции:

A B A B
И И И
И Л Л
Л И Л
Л Л Л

2 . Вторая логическая операция над высказываниями A и B - дизъюнкция, выражаемая в виде A B , определяется следующим образом: оно истинно тогда и только тогда, когда хотя бы одно из первоначальных высказываний истинно. В обычной речи эта операция соответствует соединению высказываний связкой "или". Однако здесь мы имеем не разделительное "или", которое понимается в смысле "либо-либо", когда A и B не могут быть оба истинны. В определении логики высказываний A B истинно и при истинности лишь одного из высказываний, и при истинности обоих высказываний A и B .

Таблица истинности для дизъюнкции:

A B A B
И И И
И Л И
Л И И
Л Л Л

3 . Третья логическая операция над высказываниями A и B , выражаемая в виде A B ; полученное таким образом высказывание ложно тогда и только тогда, когда A истинно, а B ложно. A называется посылкой , B - следствием , а высказывание A B - следованием , называемая также импликацией. В обычной речи эта операция соответствует связке "если - то": "если A , то B ". Но в определении логики высказываний это высказывание всегда истинно независимо от того, истинно или ложно высказывание B . Это обстоятельство можно кратко сформулировать так: "из ложного следует всё, что угодно". В свою очередь, если A истинно, а B ложно, то всё высказывание A B ложно. Оно будет истинным тогда и только тогда, когда и A , и B истинны. Кратко это можно сформулировать так: "из истинного не может следовать ложное".

Таблица истинности для следования (импликации):

A B A B
И И И
И Л Л
Л И И
Л Л И

4 . Четвёртая логическая операция над высказываниями, точнее над одним высказыванием, называется отрицанием высказывания A и обозначается ~ A (можно встретить также употребление не символа ~, а символа ¬, а также верхнего надчёркивания над A ). ~ A есть высказывание, которое ложно, когда A истинно, и истинно, когда A ложно.

Таблица истинности для отрицания:

A ~ A
Л И
И Л

5 . И, наконец, пятая логическая операция над высказываниями называется эквивалентностью и обозначается A B . Полученное таким образом высказывание A B есть высказывание истинное тогда и только тогда, когда A и B оба истинны или оба ложны.

Таблица истинности для эквивалентности:

A B A B B A A B
И И И И И
И Л Л И Л
Л И И Л Л
Л Л И И И

В большинстве языков программирования есть специальные символы для обозначения логических значений высказываний, записываются они почти во всех языках как true (истина) и false (ложь).

Подытожим вышесказанное. Логика высказываний изучает связи, которые полностью определяются тем, каким образом одни высказывания строятся из других, называемых элементарными. Элементарные высказывания при этом рассматриваются как целые, не разложимые на части.

Систематизируем в таблице ниже названия, обозначения и смысл логических операций над высказываниями (они нам вскоре вновь понадобятся для решения примеров).

Связка Обозначение Название операции
не отрицание
и конъюнкция
или дизъюнкция
если..., то... импликация
тогда и только тогда эквивалентность

Для логических операций верны законы алгебры логики , которые можно использовать для упрощения логических выражений. При этом следует отметить, что в логике высказываний отвлекаются от смыслового содержания высказывания и ограничиваются рассмотрением его с той позиции, что оно либо истинно, либо ложно.

Пример 1.

1) (2 = 2) И (7 = 7) ;

2) Не(15 ;

3) ("Сосна" = "Дуб") ИЛИ ("Вишня" = "Клён") ;

4) Не("Сосна" = "Дуб") ;

5) (Не(15 20) ;

6) ("Глаза даны, чтобы видеть") И ("Под третьим этажом находится второй этаж") ;

7) (6/2 = 3) ИЛИ (7*5 = 20) .

1) Значение высказывания в первых скобках равно "истина", значение выражения во вторых скобках - также истина. Оба высказывания соединены логической операцией "И" (смотрим правила для этой операции выше), поэтому логическое значение всего данного высказывания - "истина".

2) Значение высказывания в скобках - "ложь". Перед этим зтим высказыванием стоит логическая операция отрицания, поэтому логическое значение всего данного высказывания - "истина".

3) Значение высказывания в первых скобках - "ложь", значение высказывания во вторых скобках - также "ложь". Высказывания соединены логической операцией "ИЛИ" и ни одно из высказываний не имеет значения "истина". Поэтому логическое значение всего данного высказывания - "ложь".

4) Значение высказывания в скобках - "ложь". Перед этим высказыванием стоит логическая операция отрицания. Поэтому логическое значение всего данного высказывания - "истина".

5) В первых скобках отрицается высказывание во внутренних скобках. Это высказывание во внутренних скобках имеет значение "ложь", следовательно, его отрицание будет иметь логическое значение "истина". Высказывание во вторых скобках имеет значение "ложь". Два этих высказывания соединены логической операцией "И", то есть получается "истина И ложь". Следовательно, логическое значение всего данного высказывания - "ложь".

6) Значение высказывания в первых скобках - "истина", значение высказывания во вторых скобках - также "истина". Два этих высказывания соединены логической операцией "И", то есть получается "истина И истина". Следовательно, логическое значение всего данного высказывания - "истина".

7) Значение высказывания в первых скобках - "истина". Значение высказывания во вторых скобках - "ложь". Два этих высказывания соединены логической операцией "ИЛИ", то есть получается "истина ИЛИ ложь". Следовательно, логическое значение всего данного высказывания - "истина".

Пример 2. Запишите с помощью логических операций следующие сложные высказывания:

1) "Пользователь не зарегистрирован";

2) "Сегодня воскресенье и некоторые сотрудники находятся на работе";

3) "Пользователь зарегистрирован тогда и только тогда, когда отправленные пользователем данные признаны годными".

1) p - одиночное высказывание "Пользователь зарегистрирован", логическая операция: ;

2) p - одиночное высказывание "Сегодня воскресенье", q - "Некоторые сотрудники находятся на работе", логическая операция: ;

3) p - одиночное высказывание "Пользователь зарегистрирован", q - "Отправленные пользователем данные признаны годными", логическая операция: .

Решить примеры на логику высказываний самостоятельно, а затем посмотреть решения

Пример 3. Вычислите логические значения следующих высказываний:

1) ("В минуте 70 секунд") ИЛИ ("Работающие часы показывают время") ;

2) (28 > 7) И (300/5 = 60) ;

3) ("Телевизор - электрический прибор") И ("Стекло - дерево") ;

4) Не((300 > 100) ИЛИ ("Жажду можно утолить водой")) ;

5) (75 < 81) → (88 = 88) .

Пример 4. Запишите с помощью логических операций следующие сложные высказывания и вычислите их логические значения:

1) "Если часы неправильно показывают время, то можно невовремя прийти на занятия";

2) "В зеркале можно увидеть своё отражение и Париж - столица США";

Пример 5. Определите логическое значение выражения

(p q ) ↔ (r s ) ,

p = "278 > 5" ,

q = "Яблоко = Апельсин" ,

p = "0 = 9" ,

s = "Шапка покрывает голову" .

Формулы логики высказываний

Понятие логической формы сложного высказывания уточняется с помощью понятия формулы логики высказываний .

В примерах 1 и 2 мы учились записывать с помощью логических операций сложные высказывания. Вообще-то они называются формулами логики высказываний.

Для обозначения высказываний, как и упомянутом примере, будем продолжать использовать буквы

p , q , r , ..., p 1 , q 1 , r 1 , ...

Эти буквы будут играть роль переменных, принимающих в качестве значений истинностные значения "истина" и "ложь". Эти переменные называются также пропозициональными переменными. Мы будем далее называть их элементарными формулами или атомами .

Для построения формул логики высказываний кроме указанных выше букв используются знаки логических операций

~, ∧, ∨, →, ↔,

а также символы, обеспечивающие возможность однозначного прочтения формул - левая и правая скобки.

Понятие формулы логики высказываний определим следуюшим образом:

1) элементарные формулы (атомы) являются формулами логики высказываний;

2) если A и B - формулы логики высказываний, то ~A , (A B ) , (A B ) , (A B ) , (A B ) тоже являются формулами логики высказываний;

3) только те выражения являются формулами логики высказываний, для которых это следует из 1) и 2).

Определение формулы логики высказываний содержит перечисление правил образования этих формул. Согласно определению, всякая формула логики высказываний либо есть атом, либо образуется из атомов в результате последовательного применения правила 2).

Пример 6. Пусть p - одиночное высказывание (атом) "Все рациональные числа являются действительными", q - "Некоторые действительные числа - рациональные числа", r - "некоторые рациональные числа являются действительными". Переведите в форму словесных высказываний следующие формулы логики высказываний:

6) .

1) "нет действительных чисел, которые являются рациональными";

2) "если не все рациональные числа являются действительными, то нет рациональных чисел, являющихся действительными";

3) "если все рациональные числа являются действительными, то некоторые действительные числа - рациональные числа и некоторые рациональные числа являются действительными";

4) "все действительные числа - рациональные числа и некоторые действительные числа - рациональные числа и некоторые рациональные числа являются действительными числами";

5) "все рациональные числа являются действительными тогда и только тогда, когда не имеет место быть, что не все рациональные числа являются действительными";

6) "не имеет места быть, что не имеет место быть, что не все рациональные числа являются действительными и нет действительных чисел, которые являются рациональными или нет рациональных чисел, которые являются действительными".

Пример 7. Составьте таблицу истинности для формулы логики высказываний , которую в таблице можно обозначить f .

Решение. Составление таблицы истинности начинаем с записи значений ("истина" или "ложь") для одиночных высказываний (атомов) p , q и r . Все возможные значения записываются в восемь строк таблицы. Далее, определяя значения операции импликации, и продвигаясь вправо по таблице, помним, что значение равно "лжи" тогда, когда из "истины" следует "ложь".

p q r f
И И И И И И И И
И И Л И И И Л И
И Л И И Л Л Л Л
И Л Л И Л Л И И
Л И И Л И Л И И
Л И Л Л И Л И Л
Л Л И И И И И И
Л Л Л И И И Л И

Заметим, что никакой атом не имеет вида ~A , (A B ) , (A B ) , (A B ) , (A B ) . Такой вид имеют сложные формулы.

Число скобок в формулах логики высказываний можно уменьшить, если принять, что

1) в сложной формуле будем опускать внешнюю пару скобок;

2) упорядочим знаки логических операций "по старшинству":

↔, →, ∨, ∧, ~ .

В этом списке знак ↔ имеет самую большую область действия, а знак ~ - самую маленькую. Под областью действия знака операции понимаются те части формулы логики высказываний, к которым применяется (на которые действует) рассматриваемое вхождение этого знака. Таким образом, можно опускать во всякой формуле те пары скобок, которые можно восстановить, учитывая "порядок старшинства". А при восстановлении скобок сначала расставляются все скобки, относящиеся ко всем вхождениям знака ~ (при этом мы продвигаемся слева направо), затем ко всем вхождениям знака ∧ и так далее.

Пример 8. Восстановите скобки в формуле логики высказываний B ↔ ~ C D A .

Решение. Скобки восстанавливаются пошагово следующим образом:

B ↔ (~ C ) ∨ D A

B ↔ (~ C ) ∨ (D A )

B ↔ ((~ C ) ∨ (D A ))

(B ↔ ((~ C ) ∨ (D A )))

Не всякая формула логики высказываний может быть записана без скобок. Например, в формулах А → (B C ) и ~ (A B ) дальнейшее исключение скобок невозможно.

Тавтологии и противоречия

Логические тавтологии (или просто тавтологии) - это такие формулы логики высказываний, что если буквы произвольным образом заменить высказываниями (истинными или ложными), то в результате всегда получится истинное высказывание.

Так как истинность или ложность сложных высказываний зависит лишь от значений, а не от содержания высказываний, каждому из которых соответствует определённая буква, то проверку того, является ли данное высказывание тавтологией, можно подставить следующим способом. В исследуемом выражении на место букв подставляются значения 1 и 0 (соответственно "истина" и "ложь") всеми возможными способами и с использованием логических операций вычисляются логические значения выражений. Если все эти значения равны 1, то исследуемое выражение есть тавтология, а если хотя бы одна подстановка даёт 0, то это не тавтология.

Таким образом, формула логики высказываний, которая принимает значение "истина" при любом распределении значений входящих в эту формулу атомов, называется тождественно истинной формулой или тавтологией .

Противоположный смысл имеет логическое противоречие. Если все значения высказываний равны 0, то выражение есть логическое противоречие.

Таким образом, формула логики высказываний, которая принимает значение "ложь" при любом распределении значений входящих в эту формулу атомов, называется тождественно ложной формулой или противоречием .

Кроме тавтологий и логических противоречий существуют такие формулы логики высказываний, которые не являются ни тавтологиями, ни противоречиями.

Пример 9. Составьте таблицу истинности для формулы логики высказываний и определите, является ли она тавтологией, противоречием или ни тем, ни другим.

Решение. Составляем таблицу истинности:

И И И И И
И Л Л Л И
Л И Л И И
Л Л Л Л И

В значениях импликации не встречаем строку, в которой из "истины" следует "ложь". Все значения исходного высказывания равны "истине". Следовательно, данная формула логики высказываний является тавтологией.