Портал о ремонте ванной комнаты. Полезные советы

Биологические часы организма человека. Биологические часы организма человека по часам работы

Можно ли замедлять и ускорять биологическое время ? Замедлять его биологи уже частично умеют. Достаточно охладить организм, и живые сбавят свой ход, а то и совсем остановятся, при повышении же восстанавливают обычный ритм. Ученые давно думают над тем, как на заданный срок останавливать биологические часы у космонавтов. В таком состоянии они могут достигнуть самых отдаленных планет, почти не старея за время пути. А вот ускорить биологическое время пока значительно сложнее.

Как же сконцентрировать биологическое время? Ученые-биологи определили, что своеобразным концентратором биологического времени служат особые вещества, называемые биогенными стимуляторами. Механизм биологических часов, по-видимому, один и тот же у всех организмов, исключая бактерии, которые вообще не "приобрели" часов. Но разве с одинаковой скоростью протекают жизненные процессы у одноклеточных и многоклеточных организмов? Ведь у одних жизнь длится день, у других – столетие.

Вот коловратка – микроскопическое, но многоклеточное существо. Некоторые ее виды живут всего одну неделю. За эту неделю коловратка успевает вырасти и состариться. Так как же идет биологическое время у этой коловратки, как у человека или в 3 тыс. раз быстрее?

Сама природа дала исследователю прибор, который позволяет следить за течением биологического времени в живом организме, не входя непосредственно в его жизнь и не нарушая взаимосвязи в его структуре. Прибор этот – процесс деления самой . Скорость ее деления косвенно говорит и об обмене веществ внутри ее, и о времени, в котором она живет. Деление клетки дает и еще более важную информацию – где находится механизм, управляющий ходом биологического времени в живом.

На первый взгляд кажется несколько странным, что слон, человек, мышь и другие млекопитающие, так сильно различающиеся по размерам и по продолжительности жизни, первые шаги на жизненном пути делают с одинаковой скоростью.

Если рассматривать первые шаги жизни в развитии от одной клетки и сравнивать мышь и слона, то оказывается, что слон живет 60 лет, мышь – 2–3 года. Эмбриональное развитие у мыши – 21 день, а у слона – 660, почти 2 года. Все начинается одновременно, но как по-разному заканчивается. Может быть, у клетки мыши биологическое время сразу же побежало быстрее, и она в несколько раз обогнала по развитию зародыш слона? Нет, это не так. И мышонок, и слоненок первые 7 дней развиваются с одинаковой скоростью. Но почему же в первую неделю у зародышей слона и мыши одинаково идут биологические часы?

Оказалось, что в этот период почти у всех зародышей млекопитающих биологические часы поставлены как бы на "собачку". Наследственные механизмы – гены, регулирующие скорость роста и обмена веществ, в это время не работают.

Сначала зародыш набирает клеточную массу, в которой затем придется строить различные органы. Как только начинается строительство органов, словно бы заводится пружина часов. Каждый завод делается теперь с осторожностью и не до конца. Вся работа биологических часов идет под контролем генетического аппарата, и чем сложнее становится организм по мере развития, тем с большей четкостью гены выдают информацию. Организм начинает довлеть над работой биологических часов, и действие различных гормонов еще более замедляет биологическое время. У эмбриона, биологические часы которого не сдерживаются так сильно генетическим аппаратом и гормональными влияниями, потому что у него еще не развилась эндокринная система.

А можно ли снять тормоз времени у взрослого организма и заставить его жить быстрее? Может быть, есть такие вещества, которые концентрируют время, а проще и вернее сказать, снимают тормоз времени? Вся опасность в этом случае сводится к нарушению биологических часов. Ускорение обмена веществ и деления клеток должно быть гармоничным и обязательно в пределах нормы. Обмен веществ в живых клетках проходит всегда с несколько меньшей скоростью, клетка обладает довольно большими резервами на случай опасности. Значит, если дать сигнал опасности, то клетка частично снимет свой временной тормоз и все процессы в ней пойдут с увеличенной скоростью. Для этого необходимо воздействовать непосредственно на те гены, которые регулируют скорости химических взаимодействий огромных биомолекул внутри клетки.

Как же подать клетке сигнал опасности? В процессе эволюции в клетках организма выработался механизм, воспринимающий продукты распада, которые получаются от страдающих по соседству клеток. Поскольку у живых существ молекулярные механизмы восприятия опасности однотипны, при наличии продуктов распада ускорят свой ход биологические часы, как животных, так и растений. Вот почему листья алоэ, выдержанные в темноте, или ткани животных, находящиеся несколько дней в при 4 0 C, содержат уже вещества, способные ускорить обмен веществ в клетках организма, в который они будут введены.

Человек в самом начале эмбрионального развития живет в ускоренном биологическом времени. По мере его развития биологическое время замедляется. После рождения оно еще продолжает идти несколько скорее, чем у взрослого человека. К старости же людям кажется, что время "стоит на месте". Уж не включается ли здесь в работу на полную мощь тормоз времени – гены времени?

Давно замечено, что все живое на Земле подчиняется определенным ритмам, которые задаются глобальными процессами. Это суточное вращение планеты вокруг оси и движение ее по околосолнечной орбите. Живые организмы каким-то образом чувствуют время, и их поведение подчинено его течению. Это проявляется в чередовании периодов активности и сна у животных, в открывании и закрывании цветков у растений. Перелетные птицы каждую весну возвращаются к местам гнездования, выводят птенцов и мигрируют в теплые края на зимовку.

Что такое биологические часы?

Ритмичность протекания всех жизненных процессов - свойство, присущее всем обитателям нашей планеты. Например, морские одноклеточные жгутиконосцы светятся ночью. Неизвестно, зачем они это делают. Но днем они не светятся. Это свойство жгутиконосцы получили в процессе эволюции.

Каждый живой организм на Земле - и растения, и животные - имеют внутренние часы. Они определяют периодичность жизнедеятельности, привязанную к продолжительности земных суток. Эти биологические часы приспосабливают свой ход к периодичности смены дня и ночи, они не зависят от изменения температуры. Кроме суточных циклов, существуют сезонные (годичные) и лунные периоды.

Биологические часы - в какой-то мере условное понятие, подразумевающее свойство живых организмов ориентироваться во времени. Это свойство присуще им на генетическом уровне и передается по наследству.

Изучение механизма биологических часов

Долгое время ритмичность жизненных процессов живых организмов объяснялась ритмичностью изменения условий среды обитания: освещенность, влажность, температура, атмосферное давление и даже интенсивность космического излучения. Однако простые опыты показали, что биологические часы работают независимо от изменений внешних условий.

Сегодня известно, что они есть в каждой клетке. В сложных организмах часы образуют сложную иерархическую систему. Это нужно для функционирования как единого целого. Если какие-либо органы и ткани по времени не согласованы, возникают различного вида болезни. Внутренние часы эндогенны, то есть имеют внутреннюю природу и подстраиваются сигналами извне. Что еще нам известно?

Биологические часы передаются по наследству. В последние годы найдены доказательства этого факта. В клетках есть гены часов. Они подвержены мутациям и естественному отбору. Это нужно для согласования процессов жизнедеятельности с суточным вращением Земли. Поскольку в разных широтах соотношения продолжительности дня и ночи в течение года неодинаковы, часы нужны еще и для приспособления к смене сезонов. Они должны учитывать, прибавляет или убывает день и ночь. По-другому нельзя различить весну и осень.

Изучая биологические часы растений, ученые выяснили механизм приспособления их к изменениям продолжительности дня. Это происходит при участии особых фитохромных регуляторов. Как работает этот механизм? Фермент фитохром существует в двух формах, которые превращаются из одной в другую в зависимости от времени суток. Получаются часы, регулируемые внешними сигналами. Все процессы в растениях - рост, цветение - зависят от концентрации фермента фитохрома.

До конца механизм внутриклеточных часов еще не изучен, однако пройдена большая часть пути.

Циркадные ритмы в организме человека

Периодические изменения интенсивности биологических процессов связаны с чередованием дня и ночи. Эти ритмы называют циркадными, или циркадианными. Их периодичность - около 24 часов. Хотя циркадные ритмы связаны с процессами, происходящими вне организма, они имеют эндогенное происхождение.

У человека нет органов и физиологических функций, которые не подчинялись бы суточным циклам. Сегодня их известно более 300.

Биологические часы человека регулируют в соответствии с суточными ритмами такие процессы:

Частота сердечных сокращений и дыхания;

Потребление организмом кислорода;

Перистальтика кишечника;

Интенсивность работы желез;

Чередование сна и отдыха.

Это только основные проявления.

Ритмичность физиологических функций происходит на всех уровнях - от изменений внутри клетки до реакций на уровне организма. Эксперименты последних лет показали, что в основе циркадных ритмов - эндогенные, самоподдерживающиеся процессы. Биологические часы человека настроены на периодичность колебаний в 24 часа. Они связаны с изменениями в окружающей среде. Ход биологических часов синхронизируется с некоторыми из этих изменений. Наиболее характерные из них - чередование дня и ночи и суточные колебания температуры.

Считается, что у высших организмов главные часы расположены в головном мозге в супрахиазменном ядре таламуса. К нему ведут нервные волокна от зрительного нерва, а с кровью приносится среди прочих гормон мелатонин, вырабатываемый эпифизом. Это орган, который когда-то был третьим глазом у древних рептилий и сохранил функции регуляции циркадных ритмов.

Биологические часы органов

Все физиологические процессы в организме человека протекают с определенной цикличностью. Меняются температура, давление, концентрация сахара в крови.

Органы человека подчинены суточному ритму. За 24 часа их функции переживают поочередно периоды подъема и спада. То есть всегда, в одно и то же время, в течение 2 часов орган работает особенно эффективно, после чего переходит в фазу релаксации. В это время орган отдыхает и восстанавливается. Эта фаза длится также 2 часа.

Например, фаза подъема активности желудка приходится на период с 7 до 9 часов, за ней, с 9 до 11, следует спад. Селезенка и поджелудочная железа активны с 9 до 11, а с 11 до 13 отдыхают. У сердца эти периоды приходятся на 11-13 часов и 13-15. У мочевого пузыря фаза активности - с 15 до 17, покой и отдых - с 17 до 19.

Биологические часы органов - один из тех механизмов, который позволил обитателям Земли за миллионы лет эволюции приспособиться к суточному ритму. Но созданная человеком цивилизация неуклонно разрушает этот ритм. Как показывают исследования, разбалансировать биологические часы организма просто. Достаточно лишь кардинальным образом изменить режим питания. Например, начать обедать среди ночи. Поэтому жесткий режим питания - основополагающий принцип. Особенно важно соблюдать его с раннего детства, когда «заводятся» биологические часы организма человека. От этого напрямую зависит продолжительность жизни.

Хроногеронтология

Это новая, совсем недавно возникшая научная дисциплина, которая изучает возрастные изменения биологических ритмов, возникающие в организме человека. Хроногеронтология возникла на стыке двух наук - хронобиологии и геронтологии.

Один из предметов исследований - механизм функционирования так называемых «больших биологических часов». Этот термин впервые ввел в обращение выдающийся ученый В. М. Дильман.

«Большие биологические часы» - достаточно условное понятие. Это, скорее, модель процессов старения, протекающих в организме. Она дает понимание взаимосвязи образа жизни человека, его пищевых пристрастий с действительным биологическим возрастом. Эти часы ведут отсчет продолжительности жизни. Они фиксируют накопление изменений в организме человека от момента рождения и до смерти.

Ход больших биологических часов неравномерен. Они то спешат, то отстают. На их ход оказывают влияние многие факторы. Они то укорачивают, то удлиняют жизнь.

Принцип функционирования больших биологических часов заключается в том, что они измеряют не отрезки времени. Они измеряют ритм процессов, а точнее - потерю его с возрастом.

Исследования в этом направлении могут помочь в решении главного вопроса медицины - устранение болезней старения, которые на сегодняшний день являются основной преградой в достижении видового лимита жизни человека. Сейчас этот показатель оценивается в 120 лет.

Сон

Внутренние ритмы организма регулируют все процессы жизнедеятельности. Время засыпания и пробуждения, продолжительность сна - за все отвечает «третий глаз» - таламус. Доказано, что этот участок мозга ответственен за выработку мелатонина - гормона, регулирующего биоритмы человека. Его уровень подчиняется суточным ритмам и регулируется освещением сетчатки глаза. С изменением интенсивности светового потока уровень мелатонина возрастает или уменьшается.

Механизм сна очень тонкий и ранимый. Нарушение чередования сна и бодрствования, которое в человеке заложено природой, наносит серьезный вред здоровью. Так, постоянная посменная работа, предполагающая трудовую деятельность ночью, связана с более высокой вероятностью возникновения таких заболеваний, как сахарный диабет 2-го типа, сердечные приступы и рак.

Во сне человек полностью расслабляется. Все органы отдыхают, только мозг продолжает трудиться, систематизируя полученную за день информацию.

Сокращение продолжительности сна

Цивилизация вносит свои коррективы в жизнь. Исследуя биологические часы сна, ученые обнаружили, что современный человек спит на 1,5 часа меньше, чем люди в 19 веке. Чем же опасно сокращение времени ночного отдыха?

Нарушение естественного ритма чередования сна и бодрствования ведет к сбоям и нарушениям в работе жизненно важных систем организма человека: иммунной, сердечно-сосудистой, эндокринной. Недостаток сна приводит к излишней массе тела, влияет на зрение. Человек начинает чувствовать дискомфорт в глазах, нарушается четкость изображения, возникает опасность развития серьезного заболевания - глаукомы.

Недостаток сна провоцирует сбои в работе эндокринной системы человека, увеличивая тем самым риск возникновения тяжелого недуга - сахарного диабета.

Исследователи выявили интересную закономерность: продолжительность жизни больше у людей, которые спят от 6,5 до 7,5 часов. И сокращение, и увеличение времени сна приводит к уменьшению продолжительности жизни.

Биологические часы и здоровье женщины

Этой проблеме посвящены многие исследования. Биологические часы женщины - это способность ее организма к производству потомства. Существует другой термин - фертильность. Речь идет о предельном возрасте, благоприятном для рождения детей.

Несколько десятилетий назад часы показывали отметку в тридцать лет. Считалось, что реализация себя в качестве матерей для представительниц прекрасного пола после этого возраста сопряжена с риском для здоровья женщины и ее будущего ребенка.

Сейчас ситуация изменилась. Существенно - в 2,5 раза - увеличилось число женщин, впервые зачавших ребенка в возрасте от 30 до 39 лет, а тех, кто сделал это после 40, стало больше на 50%.

Тем не менее специалисты считают благоприятным возрастом для материнства 20-24 года. Часто желание получить образование, реализовать себя в профессиональной сфере побеждает. Лишь немногие женщины принимают на себя в этом возрасте ответственность за воспитание малыша. Половая зрелость на 10 лет опережает зрелость эмоциональную. Поэтому большинство специалистов склоняются к мнению, что для современной женщины оптимальный срок для рождения ребенка - это 35 лет. Сегодня их уже не включают в так называемую группу риска.

Биологические часы и медицина

Реакция организма человека на различные воздействия зависит от фазы циркадного ритма. Поэтому биологические ритмы играют большую роль в медицине, особенно при диагностике и лечении многих заболеваний. Так, действие лекарственных препаратов зависит от фазы околосуточного биоритма. Например, при лечении зубов обезболивающий эффект максимально проявляется с 12 до 18 часов.

Изменение чувствительности человеческого организма к лекарственным препаратам изучает хронофармакология. Основываясь на информации о суточных биоритмах, разрабатываются наиболее эффективные схемы приема лекарств.

Например, сугубо индивидуальные колебания значений артериального давления требуют учета этого фактора при приеме лекарств для лечения гипертонической болезни, ишемии. Так, во избежание криза людям из группы риска лекарства следует принимать вечером, когда организм наиболее уязвим.

Кроме того, что биоритмы организма человека оказывают влияние на эффект от приема препаратов, нарушения ритмики могут быть причиной различных заболеваний. Они относятся к так называемым динамическим недугам.

Десинхроноз и его профилактика

Для здоровья человека огромное значение имеет дневная освещенность. Именно солнечный свет обеспечивает естественную синхронизацию биоритмов. Если освещенность недостаточная, как это бывает зимой, происходит сбой. Это может быть причиной многих заболеваний. Развиваются психические (депрессивные состояния) и физические (снижение общего иммунитета, слабость и т. д.). Причина этих расстройств кроется в десинхронозе.

Десинхроноз возникает, когда биологические часы организма человека дают сбой. Причины могут быть разные. Десинхроноз возникает при смене на длительный период часового пояса, в период адаптации при переходе на зимнее (летнее) время, при посменной работе, увлечении алкоголем, беспорядочном питании. Выражается это в расстройстве сна, приступах мигрени, снижении внимания и концентрации. В итоге может возникнуть апатия и депрессия. Людям старшего возраста адаптация дается тяжелее, на это им требуется больше времени.

Для профилактики десинхроноза, коррекции ритмов организма используют вещества, которые могут влиять на фазы биологических ритмов. Их называют хронобиотиками. Они содержатся в лекарственных растениях.

Хорошо поддаются коррекции биологические часы с помощью музыки. Она способствует повышению производительности труда при выполнении монотонной работы. С помощью музыки также лечат нарушения сна и нервно-психические заболевания.

Ритмичность во всем - путь улучшения качества жизни.

Практическое значение биоритмологии

Биологические часы - объект серьезных научных исследований. Заказчики их - многие отрасли хозяйства. Результаты изучения биологических ритмов живых организмов с успехом применяются на практике.

Знание ритмов жизни домашних животных и культурных растений помогает повышать эффективность сельскохозяйственного производства. Используют эти знания охотники и рыбаки.

Суточные колебания в организме физиологических процессов учитывает медицинская наука. Эффективность приема лекарств, хирургических вмешательств, выполнения лечебных процедур и манипуляций напрямую зависит от биологических часов органов и систем.

Достижения биоритмологии давно используются при организации режима труда и отдыха экипажей авиалайнеров. Их работа связана с пересечением нескольких часовых поясов за один рейс. Устранение неблагоприятного влияния этого фактора имеет очень большое значение для сохранения здоровья летного состава авиакомпаний.

Трудно обойтись без достижений биоритмологии в космической медицине, особенно при подготовке длительных полетов. Далеко идущие грандиозные планы по созданию поселений людей на Марсе не обойдутся, по-видимому, без изучения особенностей функционирования биологических часов человека в условиях этой планеты.

- 108.00 Кб

Биологическое время. Биологический возраст

по курсу Концепции современного естествознания

Введение 3

Заключение 16

Введение

Ответа нет.

С понятием временной организации тесно связана проблема специфичности течения времени в живых системах, или, как ее называют, проблема биологического времени. Этой проблемы касались многие ученые.

Огромную роль в этом вопросе сыграл В. И. Вернадский, который создал понятие биологического пространства-времени и тем самым поднял учение о биосфере на теоретический уровень.

Исследование проблемы биологического времени имеет большое значение. Во-первых, она связана с понятием «биологических ритмов». Все живое на нашей планете несет отпечаток ритмического рисунка событий, характерного для нашей Земли. В сложной системе биоритмов, от коротких - на молекулярном уровне - с периодом в несколько секунд, до глобальных, связанным с годовыми изменениями солнечной активности живет и человек.

Во-вторых, все это имеет отношение к биологическому возрасту человека как к показателю уровня развития, изменения или износа структуры, его функциональной системы, организма в целом или сообщества организмов (биоценоза), выраженный в единицах времени путем соотнесения значений, определяющих эти процессы биологических маркеров старения с эталонными среднестатистическими зависимостями изменений этих биомаркеров от календарного возраста.

Поскольку все организмы и сообщества организмов представляют скоррелированные системы, все изменения, происходящие в них, в конце концов ведут к их распаду - смерти, как и у всех физических систем. Но процесс распада организмов и сообществ организмов, или их старение, неравномерен. Поэтому при одном и том же астрономическом или календарном возрасте различных организмов, людей, сообществ степень постарения отдельных органов, элементов и систем будет различна.

И, в-третьих, актуальность данного реферата можно обосновать тем, что изучение этих волнующих вопросов, и попытки проникнуть в неизведанное могут принести реальные плоды. Человеческая жизнь может качественно измениться, биологические способности индивидов могут увеличиться и, наконец, кто знает, возможно, мы подойдем к разгадке сущности Вселенной и обретем новые знания.

Цель данного реферата – рассмотреть формулировку понятия «биологического времени», суть биоритмологического подхода к феномену времени. А также выяснить, что является биологическим возрастом индивида. Определить критерии биологического возраста и рассмотреть особенности биологического возраста мужчин и женщин.

Глава 1. Биологическое время.

§1. Формулировка понятия и введение термина.

С понятием временной организации тесно связана проблема специфичности течения времени в живых системах, или, как ее называют, проблема биологического времени.

Большинство авторов подчеркивает, что время едино во Вселенной, какого-либо особого (например, биологического времени) нет, правомерно говорить лишь о субъективной оценке времени. Однако существует и противоположная позиция, имеющая немалое число сторонников. Проблема биологического времени была поставлена более 100 лет назад К.Бэром, основоположником эмбриологии. Научно обоснованная идея о биологическом времени принадлежит В.И. Вернадскому. В 1929-1931 гг.

В. И. Вернадский создает понятие биологического пространства-времени и тем самым поднимает учение о биосфере на теоретический уровень. Толчком для давно назревавшего намерения Вернадского напрямую и открыто заговорить о проблеме времени в современной науке, послужила только что вышедшая книга уже хорошо знакомого ему по литературе английского астронома Артура Эддингтона, горячего сторонника и даже пропагандиста теории относительности. 13 августа он пишет Б.Л. Личкову: “На днях получил книгу Eddington’a The nature o f the physical World – очень много заставляет думать. Он дает картину Мира, где нет законов всемирного тяготения в их обычном представлении. Довольно много было мне нового в некоторых следствиях. Попытка построить Мир, где действие законов причинности – ограниченное. Эддингтон делает из этого философские и религиозные выводы… Мне, однако, кажется, что получающаяся картина Мира не может быть верна, так как Эддингтон принимает резкое отличие времени и пространства, по существу, упуская явления симметрии».

В сентябре в Праге Вернадский начинает вплотную работать над проблемой времени. О направлении его мысли и о намерениях дают представление и другие чрезвычайно важные и красноречивые свидетельства. 9 сентября 1929 г. он пишет своему заместителю по БИОГЕЛу А.П. Виноградову. «Я здесь много обдумывал вопросы живого вещества и пробую набросать кое-какие мысли. Хочу сделать доклад о диссимметрии живого вещества в биологическом времени – не знаю, в Обществе естествоиспытателей (как прежние два доклада), или на годовом заседании нашей Лаборатории (кстати, нам надо справиться, когда она официально утверждена)? Пока мне очень трудно справиться с этой задачей, но я надеюсь эти немногие недели, что мне осталось здесь, ее двинуть. Очень интересно затронуть оба вопроса совместно: и диссимметрия, открытая Пастером, и так мало проникшая в сознание натуралистов, и биологическое время, о котором я много думаю – уже несколько лет – имеют много общего и сейчас приобретают огромный интерес в связи с новым направлением физических

дисциплин. Не знаю, удастся ли мне все ясно сформулировать – но я хочу рассмотреть эти вопросы [в связи] с новой физикой. Для биологического времени важно определить единицу этого времени, равную минимальному промежутку между двумя поколениями – между делениями клеток или делениями бактерий (Cyanophyceae?). В последнем случае мы имеем дело не со средой нашего тяготения, а средой молекулярных сил. И здесь, должно быть, есть скачок? Скачок, имеющий биологическое значение. В первом случае д[олжны] б[ыть] часы, а во втором 15-20 минут? Надо будет заказать кому-нибудь свести весь эспериментальный материал, имеющийся в этой области, и мы эту сводку можем напечатать в наших трудах». (Одновременно с созданием БИОГЕЛ было получено право издавать непериодически ее труды).

Слова Вернадского чрезвычайно важны для темы данного реферата: скорее всего, здесь, именно 9 сентября 1929 г., Вернадский впервые озвучивает свой новый термин биологическое время. Пока еще не в научной статье, но в частном письме. Затем Вернадский начинает с очень широкого, предельного охвата: «Время физика несомненно, не есть отвлеченное время математика или философа, и оно в разных явлениях проявляется в столь различных формах, что мы вынуждены это отмечать в нашем эмпирическом знании. Мы говорим об историческом, геологическом, космическом и т.п. временах. Удобно отличать биологическое время, в пределах которого проявляются жизненные явления.

Это биологическое время отвечает полутора – двум миллиардам, на протяжении которых нам известно на Земле существование биологических процессов, начиная с археозоя. Очень возможно, что эти годы связаны только с существованием нашей планеты, а не с действительностью жизни в Космосе. Мы сейчас ясно подходим к заключению, что длительность существования космических тел предельна, т.е. и здесь мы имеем дело с необратимым процессом. Насколько предельна жизнь в ее проявлениях в Космосе, мы не знаем, так как наши знания о жизни в Космосе ничтожны. Возможно, что миллиарды лет отвечают земному планетному времени и составляют лишь малую часть биологического времени».

Вернадский утверждает: «На основе новой физики явление должно изучаться в комплексе пространство-время. Пространство жизни имеет особое, единственное в природе симметрическое состояние. Время, ему отвечающее, имеет не только полярный характер векторов, но особый, ему свойственный параметр, особую, связанную с жизнью единицу измерения».

Вернадский был единственным ученым в 1929 году, который своим понятием биологического времени перевернул все представления на 180 градусов: не жизнь как ничтожная, не принимаемая во внимание подробность на ничтожной крупице в космосе – планете Земля, существует на фоне великой Вселенной, но вся материальная Вселенная разворачивается на фоне времени жизни.

Следует сказать о приоритете во введении понятия биологическое время. Понятие бытует в сегодняшней науке.

В мировой литературе приоритет в употреблении понятия биологическое время связывается с именем французского гистолога Леконта дю Нуи. Во время работы врачом в госпитале во время первой мировой войны он заинтересовался скоростью заживления ран и стал исследовать эту проблему. В том числе и с точки зрения времени, которое он разделил на внешнее и внутреннее, назвав последнее физиологическим или биологическим.

В последующем довольно бурном развитии работ, связанных с использованием термина и понятия биологического времени, особенно в 60-70 гг., он приобрел совершенно другое направление, уже содержавшееся в работах Леконта дю Нуи и Г. Бакмана. Это направление стало называться биоритмология.

§2. Биоритмологический подход к феномену времени.

Любые изменения в живых системах обнаруживаются только при сравнении состояний системы как минимум в двух временных точках, разделенных большим или меньшим интервалом. Однако их характер может быть различным. О фазовых изменениях в системе говорят когда, в системе последовательно сменяются стадии какого-либо биологического процесса. Примером может служить смена стадий онтогенеза, то есть индивидуального развития организма. Изменения такого типа свойственны морфофизиологическим показателям организма после воздействия на него каким-либо фактором. Эти изменения характеризуют как нормальное течение процессов в организме, так и реакцию на воздействия.
Имеется особый класс периодических изменений деятельности и поведения живых систем – биологические ритмы. Учение о биологических ритмах (в узком смысле) получило наименование биоритмологии, т.к. сегодня признается, что биологический ритм – один из наиболее важных инструментов исследования роли фактора времени в деятельности живых систем и их временной организации.

В сложной системе биоритмов, от коротких - на молекулярном уровне - с периодом в несколько секунд, до глобальных, связанным с годовыми изменениями солнечной активности живет и человек. Биологические ритмы или биоритмы - это более или менее регулярные изменения характера и интенсивности биологических процессов. Способность к таким изменениям жизнедеятельности передается по наследству и обнаружена практически у всех живых организмов. Их можно наблюдать в отдельных клетках, тканях и органах, в целых организмах и в популяциях.

Выделим следующие важные достижения хронобиологии (область науки, которая исследует периодические (циклические) феномены, протекающие у живых организмов во времени, и их адаптацию к солнечным и лунным ритмам):

Описание работы

В условиях современности, науке нельзя ограничиваться анализом пространственного аспекта отдельно от временного, они связаны воедино. Пространство в естествознании выражает протяженность, порядок и характер размещения материального объекта, их взаимное расположение.
Время в естествознании отражает последовательность процессов изменений и длительность существований объекта.

Попыток определить единство пространственно-временной организации в отношении живого объекта не предпринималось. Писатель Сартаков в романе “Философский камень”:

“Альберт Эйнштейн как математик разгадал единое пространство-время, найдя 4ое измерение. Но это только для мертвой материи. А между тем жизнь, течение жизни никак не отделимы от пространства и времени. Эйнштейн, почему же вы пренебрегли этим? Я тоже хочу разгадать пространство и время, но для живой материи. Я все испробовал. Какая наука даст мне ответ на это?”

Глава 1. Биологическое время 5

§1. Формулировка понятия и введение термина 5

§2. Биоритмологический подход к феномену времени 7

Глава 2. Биологический возраст 11

§1. Понятие и критерии определения биологического возраста 11

§2. Биологический возраст мужчин и женщин 13

Заключение 16

Список использованной литературы 18

равномерная длительность класса соравномерных биологических процессов живого организма. Мысль о том, что природа живых организмов обусловлена прежде всего спецификой временной организации протекающих в них процес сов, была высказана еще в середине XIX века Карлом Эрнстом фон Бэром1. Некоторые исследователи пытались ввести в научный обиход понятия «биологическое время» (Вернадский В.И.), «физиологическое время» (леконт дю Нуйи), «органическое время» (Бакман Г.). Однако недостаточная разработанность философского учения о времени не позволила определить вводимые понятия таким образом, чтобы ими можно было пользоваться при экспериментальных и теоретических исследованиях подобно тому, как в физике используется понятие «время». Ближе всего к адекватному пониманию биологического времени подошли исследователи, которые обнаружили, что если в качестве самотождественной единицы длительности использовать периоды какихлибо повторяющихся процессов живого организма, то можно выявить специфические закономерности его развития. Особенно значительные результаты на таком пути исследований получены Т.А. Детлаф1, которая в 1960 г. совместно с братом - физиком А. А. Детлафом - выступила с предложением использовать при изучении эмбрионального развития пойкилотермных животных в качестве единицы измерения времени длительность одного митотического цикла периода синхронных делений дробления, обозначенную ими? и 0 получившую по инициативе А.А. Нейфаха наименование «детлаф»2. Т.А. Детлаф разработала методику хронометрирования развития живых организмов в единицах биологического времени? и использовала ее 0 при изучении многих видов пойкилотермных животных3. Однако до последнего времени оставался открытым вопрос о правомерности квалификации подобных единиц длительности как единиц особого типа времени, поскольку, будучи длительностями периодов циклических процессов живых организмов, они подвержены случайным колебаниям, тогда как на протяжении всей истории развития понятия времени равномерность рассматривается как одно из важнейших свойств времени. Анализ понятия и критериев равномерности убедительно показал, что равномерность есть соотносительное свойство сравниваемых между собой материальных процессов и что в принципе возможно существование неограниченного множества удовлетворяющих критериям равномерности классов соравномерных процессов (КСП), каждый из которых в соответствующей области материальной действительности обладает свойствами равномерности и пригоден для введения единиц длительности и практического измерения времени1. При этом выяснилось, что КСП могут существовать в таких целостных высокоинтегрированных материальных системах, в которых материальные процессы настолько тесно взаимосвязаны и сопряжены, что ведут себя как единый поток, синхронно и пропорционально ускоряясь и замедляясь под воздействием различных и, в том числе, случайным образом изменяющихся факторов. Именно такого рода системами являются живые организмы. О наличии в живых организмах классов соравномерных биологических процессов свидетельствуют исследования Т.А. Детлаф и ее коллег. Они установили, что с изменением температуры среды дли тельности различных этапов эмбрионального развития пойкилотермных жи вотных изменяются пропорционально и что эта закономерность имеет фунда ментальный характер, охватывая процессы всех структурных уровней органи зации эмбриона. Как отмечает Т.А. Детлаф, «... с изменением температуры про порцио нально изменяется длительность процессов, имеющих самую разную природу и осуществляющихся на разных уровнях организации организма: внут риклеточном (молекулярном и ультраструктурном), клеточном (при делении клеток и их дифференцировке), на уровне морфогенетических движений, про цессов индук ции и органогенеза»2. Иными словами, вся совокупность биологических процессов, из которых складывается развитие эм бриона, ведет себя как единый целостный процесс. В нем имеются как сравнительно медленные (протекающие на кле точном уровне процессы деления клеток и их дифференци ровка), так и весьма быстрые, протекающие на внутриклеточном, молекуляр ном уровне, к которым относятся, например, ферментативные реакции внутри клеточного метаболизма. Достаточно очевидно, что если бы на каких-то структурных уровнях организации эмбриона нарушалась синхронность и пропорциональность изме нения темпов биологических процессов, то это разрушило бы закономерное течение всего потока процессов формирования и раз вития живого организма. Указывая на это обстоятельство, Т.А. Детлаф подчеркивает: «Не будет преувеличе нием, если мы скажем, что без этой способности пойки лотермные организмы вообще не могли бы существовать в меняющихся усло виях внешней среды: если бы раз ные компоненты комплекса процессов, из ко торых складывается любой этап разви тия, изменялись асинхронно, то это при водило бы к возникновению нарушений нормального развития, а на более поздних стадиях - к на рушению нормального функционирования организма. Не случайно, что одной из первых реакций зародышей на приближение к границам оптимальных тем ператур является десинхронизация отдельных процессов развития» (Там же). Биологическое и физическое время взаимно стохастичны, поскольку единицы биологического времени представляют собой длительности таких повторяющихся биологических процессов, которые, будучи измеренными в единицах физического времени, меняются случайным образом, в зависимости от случайных изменений характеристик окружающих условий. Процессы функционирования и развития живых организмов даже генетически достаточно далеких друг от друга биологических видов при хронометрировании их в единицах собственного биологического времени подчиняются единым законам функционирования и развития2. В настоящее время становится все более очевидным, что раскрыть сущность жизни и научиться математически описывать ее как особое движение мате рии невозможно без введения в понятийный аппарат биологии понятия биологического времени. Хронометрируя и теоретически описывая биологические процессы в единицах биологического времени, можно будет пробиться сквозь внешнюю стохастичность процессов к тем динамическим законам, по которым в соответствии с заданной генетической программой идет развитие организма. Такой вывод подтверждается результатами более чем столетних исследований развития живых организмов и протекающих в них биологических процессов с использованием специфических единиц длительности. Впервые особую единицу длительности, названную им «пластохроном», ввел немецкий ботаник E. Аскенази1, который определил ее как период заложения одного зачатка метамера2 «стеблевой единицы». В дальнейшем единицу измерения длительности «пластохрон» применяли К. Торнтвейт1, Д.А. Сабинин2, Е.Ф. Марковская и Т.Г. Харькина (Марковская, Харькина 1997) и др. При изучении эмбрионального развития живых организмов одним из первых особые единицы длительности предложил И.И. Шмальгаузен3. Однако использованные И.И. Шмальгаузеном единицы длительности, связанные с определенным изменением объема зародыша, оказались применимы только при изучении роста организма, а не его развития. Некоторые исследователи в качестве единицы длительности используют ту или иную долю от полного времени эмбрионального развития. К таким единицам относится, например, «1% DT» (DT - Development Time - время развития), которая применялась при изучении развития эмбрионов осетровых рыб (Детлаф, Гинзбург, 1954), домашних птиц (Еремеев, 1957, 1959), насекомых (Striebel, 1960; Ball, 1982; Mori, 1986). И хотя она применима только при изучении организмов, которые выходят из яйцевых оболочек на одной и той же стадии развития, тем не менее позволяет открыть многие закономерности эмбрионального развития исследуемых животных. Так, Г.П. Еремеев, изучая зародышевое развитие разных видов птиц, время наступления этапов развития выразил в долях периода от откладки яйца до вылупления. В результате оказалось, что у таких домашних птиц, как куры, утки, гуси, индейки, а также у та ких птиц, как чибис, голубь домашний, крачка черная, одни и те же эта пы зародышевого развития при измерении времени указанным выше спо собом наступают «одновременно», тогда как в единицах астрономиче ского времени разница в длительности от дельных этапов развития у раз ных птиц достигает многих суток. В начале 80-х годов Ю.Н. Городиловым было предложено в качестве единицы длительности при изучении временных закономерностей развития костистых рыб использовать «отрезок времени, за который происходит приращение единичного сомита в течение метамеризации комплекса осевого зачатка зародыша от 1 до 60 сомитов» (Городилов, 1980, с. 471). В бактериологии существует мнение, что «для оценки процессов роста и развития бактерий целесообразно использовать не привычное и стабильное фи зическое время, а вариабельное время генерации (?)...»1. К сожалению, введенные рядом биологов единицы биологического времени слишком крупны для того, чтобы математически моделировать более фундаментальные биологические процессы живого организма2. Имеются веские основания считать, что биологические (биохимические и биофизические) процессы живого организма начинаются с каталитических циклов ферментативных реакций внутриклеточного метаболизма. Еще в начале 60-х годов ХХ столетия Христиансен привел убедительные аргументы в пользу когерентности каталитических циклов всех участвующих в катализе конкретной биохимической реакции молекул фермента3. При этом естественно предположить, что большую часть периода каталитического цикла макромолекулы фермента находятся в стабильных конформациях, а реагирующая среда пребывает в жидкокристаллическом состоянии4, при котором максимально заторможены перемещения молекул в реагирующей среде. лишь на короткие, строго дозированные моменты конформационных переходов макромолекул фермента реагирующая среда приходит в жидкое состояние, возбужденное конформационными изменениями макромолекул фермента1. При этом интенсивно протекают процессы диффузии молекул в реагирующей среде. Таким образом, вполне правомерным является представление, согласно которому каталитические циклы всех участвующих в биохимической реакции молекул фермента протекают синхронно, в силу чего каталитический цикл представляет собой обладающий биологическим значением элементарный акт биохимической реакции, а длительность этого цикла - далее неделимый квант биологического времени. В пределах квантов биологического времени нет биологических процессов, а имеют место физические взаимодействия атомов и элементарных частиц и физико-химические процессы, однако они не могут свободно протекать в силу структурных и организационных ограничений, которые накладывает на них живая клетка. В частности, нормальному течению физических и физико-химических процессов мешает принципиальная стохастичность длительности каталитических циклов, которая разрушает нормальное функционирование во внутриклеточной реагирующей среде физических законов и как бы переподчиняет эту среду действию биологических законов. Биологическое время исторично и иерархически многоуровнево. В процессе онтогенетического развития каждый живой организм, начиная с единственной оплодотворенной яйцеклетки, постепенно превращается в сложную иерархически многоуровневую материальную систему со специфическими закономерностями временной организации процессов на разных уровнях. Вопрос о том, являются ли биологические времена разных иерархических уровней лишь разными масштабными уровнями одного и того же времени или на разных уровнях возникают качественно разные биологические времена, на сегодняшний день остается открытым. Что касается биологического времени надорганизменных структур живой материи, то оно качественно отличается от биологического времени живых организмов. Основными единицами времени надорганизменных структур живой материи, видимо, могут служить длительности жизни следующих друг за другом поколений соответствующих живых организмов, как предполагают многие исследователи. При этом речь должна идти не об усредненной на все времена длительности жизни поколений живых организмов, а о длительности жизни поколений, реально сменяющих друг друга в непосредственно текущем настоящем времени, поскольку именно изменения (в единицах физического времени) длительностей существования следующих друг за другом поколений, рассматриваемых как конгруэнтные единицы, превращают их в единицы специфического времени, тогда как усредненные и содержащие постоянное число единиц физического времени периоды жизни поколений представляют собой единицы физического времени. В современной биологии, как и во всех естественных науках, используется Международная система единиц физических величин (СИ). Переход в биологии от физического к биологическому времени равносилен замене одной из фундаментальных единиц - секунды - на соответствующую единицу биологического времени. В силу взаимной стохастичности физического и биологического времени, производные величины, в размерностях которых имеется размерность физического времени «секунда», превратятся в стохастические переменные величины. Аналогичным образом в пределах биологических систем и процессов перестанут существовать и все физические константы, в размерностях которых фигурирует «секунда». По мере познания живой материи и выявления собственно биологических законов проявятся свои, биологические производные величины и константы, в размерностях которых будут находиться размерности биологического времени. В частности, с переходом при математическом описании биологических процессов к биологическому времени лишится смысла понятие «равномерного пространственного перемещения» и возникнет необходимость разработки представления о «биологическом пространстве» живого организма, равные расстояния в котором определяются не в пространственных, а во временных единицах. См.: «Историчность времени»; «Многоуровневость времени»; «Относительность равномерности времени»; «Физическое время». лит. Детлаф Т.А. Температурно-временные закономерности развития пойкилотермных животных. - М.: Наука, 2001. - 211 с. Хасанов И.А. Феномен времени. Часть I. Объективное время. - М., 1998. Хасанов И.А. Время: природа, равномерность, измерение. - М.: Прогресс Традиция, 2001. Хасанов И.А. Биологическое время. - М., 1999. - 39 с. // http://www.chronos. msu.ru/RREPORTS/khasanov_biologicheskoe.pdf Ильгиз А. Хасанов

На возможность возникновения для сложной системы внутреннего времени обращал внимание и И.Р. Пригожин: в случае самоорганизации каждая такая система координирует свой внутренние процессы в соответствии с собственным временем. Пригожин назвал это релятивизмом системного времени и отмечал, что, как только формируется диссипативная структура, однородность пространства и времени нарушается. Более того, он считал, что живые системы наделены способностью ощущать направление времени. Эту направленность времени отмечает также психология. Мы помним прошлое, но не помним будущего!

Биологические пространство и время характеризуют особенности пространственно - временных параметров организации материи: биологического бытия человеческого индивидуума, смену видов растительности и животных, фазы их развития. Еще Аристотель различал две сущности времени: одну - как параметр, фиксирующий различные состояния движения тел, и другую - как рождение и гибель, т.е. как характеристику возраста системы и, следовательно, направленности его от прошлого к будущему.

Наряду с линейным восприятием времени у человека возникает психологическое ощущение хода времени, обусловленное в том числе его внутренней организацией. Такое представление называют биологическим временем, или биологическими часами. Биологические часы отражают ритмический характер процессов в живом организме в виде его реакции на ритмы природы и в целом всей Вселенной. Появление биологического времени, своего для каждой живой системы, обусловлено синхронизацией биохимических процессов в организме.

Поскольку живой организм является иерархической системой, то он должен соразмерять ее функционирование с синхронизацией всех подуровней и подсистем не только во времени, но и в биологическом пространстве. Такая синхронизация связана с наличием биоритмов в системе. Чем сложнее система, тем больше у нее биоритмов. Американский кибернетик Н. Виннер (1894-1964) считал, что «именно ритмы головного мозга объясняют нашу способность чувствовать время».



Большинство физиологических процессов роста, развития, движения и обмена веществ в клетках подвержено ритмическим изменениям, обусловленным суточным (циркадным) ритмом внешней среды. Так, у растений хорошо известны ритмические циклы закрытия цветков и опускания листьев в ночное время и раскрытия их в дневное время. Однако это не всегда связано только с внешним воздействием света. Российский биофизик С.Э. Шноль приводит любопытный пример с фасолью Мэрана, листья которой опускались и поднимались вечером и утром, даже если она находилась в полностью темной комнате. Листья как бы «чувствовали» время и определяли его своими внутренними физиологическими часами. Обычно растения определяют длительность дня по переходу пигмента фитохрома из одной формы в другую при изменении спектрального состава солнечного света. «Закатное» солнце «красное» из-за того, что длинноволновый красный свет рассеивается меньше, чем синий. В этом закатном или сумеречном свете много красного и инфракрасного излучений, и растения (а может быть, и животные) это чувствуют.

Человек, изучающий мир, сам является структурой, изменяющейся во времени, и для него представления о прошлом и будущем существенно разные. В прошлом время выступает как обобщенная координата, а в будущем оно обладает свойствами, зависящими от того, как мы и другие объекты ведем себя в настоящем. Если прошлое определено, то будущее сложных систем известно не полностью. Как сказал социолог И.В. Бестужев-Лада, «прошлое можно знать, но нельзя изменить, а будущее можно изменить, но нельзя знать». Чем сложнее структура, тем большее число возможных состояний она может принимать в будущие моменты времени. В этом неоднозначность времени. Кроме того, время для индивидуальной особи, для ее вида, рода, класса и т.д. различно (масштаб времени). Для человека оно меньше, для человечества - больше. «Чувство времени» для живого организма всегда субъективно: быстро, когда человек увлечен, медленно - в безделье.

Эти различные формы времени и его воздействия на особенности жизни и поведения человека должны проявляться в его облике и остальных его свойствах и качествах. Во многих психологических исследованиях однозначно было показано, что в зависимости от функционального состояния человека его собственное субъективное время течет по разному. Известный летчик-испытатель М.Галлай описывает случай исследования явления флаттера во время полета самолета. Летчик оценил продолжительность своих действий до разрушения самолета и катапультирования в 50-55с. Однако когда был расшифрован «черный ящик», оказалось, что прошло всего 7 секунд, т.е. для самого пилота время замедлилось в 7 раз! Отметим, что для отдельного человека время выступает не в качестве независимой объективной переменной (астрономическое время), а наоборот, в роли параметра, зависимого от состояния человека. Человеку трудно воспринимать (и ощущать!) время как таковое (в некотором смысле оно для него абстрактное понятие). Для живых организмов течение абсолютного времени лишено реальности. Мы воспринимаем не время, а происходящие в течение его процессы и изменения, в том числе оцениваем и последовательность событий.

Эталоном времени для человека часто служит его собственное внутреннее время. Собственное время ощущают, например, буддийские монахи, длительно пребывающие в темных пещерах, в одиночестве, без астрономических и обычных земных датчиков времени. Исследования психологов показывают, что в таких случаях люди начинают жить именно в своем времени, и если бы это продолжалось достаточно долго, они могли бы создать свою собственную историческую хронологию.

Исследование и моделирование физиологического времени должно быть, вероятно, связано со становлением новой событийно ориентированной биоритмологии, где учитываются физиологическая сущность того, что является событием для живого организма, и его собственные ритмические закономерности. Наш физиологический возраст не зависит от того, сколько восходов и заходов Солнца мы видели на протяжении своей жизни. Интенсивность жизненных процессов связана с внутренним временем, биологическими часами. Ими управляются также такие процессы, как объем клеточного ядра, частота делений клеток, интенсивность фотосинтеза и клеточного дыхания, активность биохимических процессов и т.д. Предполагается, что это биологическое время может течь по-разному, неравномерно, если его сравнивать с физическим (астрономическим) временем. Однако заметим, что до настоящего времени экспериментально такая неравномерность времени в целом во Вселенной не обнаружена.

Синхронизированный общий биоритм организма может не совпадать с ритмом астрономического времени. В молодом возрасте у организма циклы чаще, и психологически кажется, что астрономическое время тянется медленнее, а в старости биологическое время идет медленнее и поэтому кажется, что астрономическое время идет быстрее. Теперь понятно, почему время для ребенка и старого человека течет по разному. У первого оно медленнее, у второго - быстрее. Ощущение человеком времени связано с эмоциональной окраской событий, в нем происходящих. Поэтому-тов детстве, когда эмоции сильнее, события кажутся более длительными. Боль удлиняет время, счастье - укорачивает («счастливые часов не наблюдают»). Возникает некий конфликт между физическим и биологическим временем. Говорят же, что женщине столько лет, на сколько она выглядит; а для здорового человека не важно, сколько ему лет, важно - как и на сколько лет он себя чувствует. Все - индивидуально!

В целом здоровье организма определяется состоянием и количеством его элементарных «атомов» - клеток. Скорость эволюции клеток, их рост и отмирание будут определять время жизни организма. В молодости скорость возобновления клеток высокая; в старости она замедляется, производная по времени от числа новых клеток меньше нуля, как говорят физики. Жизнь характеризуется интенсивностью обновления клеток, а при старении замедляется биологическое время, запрограммированное самой эволюцией жизни. Продолжительность жизни клеток определяется числом их делений, специфичным для каждого вида. Для живых организмов имеются экспериментальные подтверждения, что скорость деления клетки, задаваемая биоритмами, вначале растет, по мере развития организма достигает максимального значения и затем уменьшается, вплоть до нуля при естественной смерти организма. Клетки и органы ведут отсчет времени, согласуясь с программой, заложенной в геноме.

И «если жизнь прошла интенсивно, то она кажется полезной и интересной» (российский биолог И. И. Мечников (1845-1916)). Подобную мысль высказывал французский писатель и философ А. Камю (1913-1966): «Годы в молодости стремительно бегут, потому что они полны событий, а в старости тянутся медленно из-за того, что эти события предопределены». Видимо, это позволило Л. Ландау обоснованно перед смертью сказать: «Кажется, я неплохо прожил жизнь». А для автора всегда программным был девиз: «Только интенсивный обмен энергией с окружающей средой позволяет мне оставаться творческой личностью». Российский биолог И. И.Аршавский отмечал, что чем активней и с большими энергозатратами живет организм, тем больше длительность его жизни.

Заметим также, что случайные процессы, роль которых в квантовой статистике и биологии велика, могут полностью реализовываться лишь в бесконечно большом времени, а само время ограничено существованием мира.