Портал о ремонте ванной комнаты. Полезные советы

Сила всемирного тяготения: характеристика и практическая значимость.

ОПРЕДЕЛЕНИЕ

Закон всемирного тяготения открыл И. Ньютоном:

Два тела притягиваются друг к другу с , прямо пропорциональной произведению их и обратно пропорциональной квадрату расстояния между ними:

Описание закона всемирного тяготения

Коэффициент — это гравитационная постоянная. В системе СИ гравитационная постоянная имеет значение:

Эта постоянная, как видно, очень мала, поэтому силы тяготения между телами, имеющими небольшие массы, тоже малы и практически не ощущаются. Однако движение космических тел полностью определяется гравитацией. Наличие всемирного тяготения или, другими словами, гравитационного взаимодействия объясняет, на чем «держатся» Земля и планеты, и почему они двигаются вокруг Солнца по определенным траекториям, а не улетают от него прочь. Закон всемирного тяготения позволяет определить многие характеристики небесных тел – массы планет, звезд, галактик и даже черных дыр. Этот закон позволяет с большой точностью рассчитать орбиты планет и создать математическую модель Вселенной.

С помощью закона всемирного тяготения также можно рассчитать космические скорости. Например, минимальная скорость, при которой тело, движущееся горизонтально над поверхностью Земли, не упадёт на неё, а будет двигаться по круговой орбите – 7,9 км/с (первая космическая скорость). Для того, чтобы покинуть Землю, т.е. преодолеть ее гравитационное притяжение, тело должно иметь скорость 11,2 км/с, (вторая космическая скорость).

Гравитация является одним из самых удивительных феноменов природы. В отсутствии сил гравитации существование Вселенной было бы невозможно, Вселенная не могла бы даже возникнуть. Гравитация ответственна за многие процессы во Вселенной – ее рождение, существование порядка вместо хаоса. Природа гравитации до сих пор до конца неразгаданна. До настоящего времени никто не смог разработать достойный механизм и модель гравитационного взаимодействия.

Сила тяжести

Частным случаем проявления гравитационных сил является сила тяжести.

Сила тяжести всегда направлена вертикально вниз (по направлению к центру Земли).

Если на тело действует сила тяжести, то тело совершает . Вид движения зависит от направления и модуля начальной скорости.

С действием силы тяжести мы сталкиваемся каждый день. , через некоторое время оказывается на земле. Книга, выпущенная из рук, падает вниз. Подпрыгнув, человек не улетает в открытый космос, а опускается вниз, на землю.

Рассматривая свободное падение тела вблизи поверхности Земли как результат гравитационного взаимодействия этого тела с Землей, можно записать:

откуда ускорение свободного падения:

Ускорение свободного падения не зависит от массы тела, а зависит от высоты тела над Землей. Земной шар немного сплюснут у полюсов, поэтому тела, находящиеся около полюсов, расположены немного ближе к центру Земли. В связи с этим ускорение свободного падения зависит от широты местности: на полюсе оно немного больше, чем на экваторе и других широтах (на экваторе м/с , на Северном полюсе экваторе м/с .

Эта же формула позволяет найти ускорение свободного падения на поверхности любой планеты массой и радиусом .

Примеры решения задач

ПРИМЕР 1 (задача о «взвешивании» Земли)

Задание Радиус Земли км, ускорение свободного падения на поверхности планеты м/с . Используя эти данные, оценить приближенно массу Земли.
Решение Ускорение свободного падения у поверхности Земли:

откуда масса Земли:

В системе Си радиус Земли м.

Подставив в формулу численные значения физических величин, оценим массу Земли:

Ответ Масса Земли кг.

ПРИМЕР 2

Задание Спутник Земли движется по круговой орбите на высоте 1000 км от поверхности Земли. С какой скоростью движется спутник? За какое время спутник совершит один полный оборот вокруг Земли?
Решение По , сила, действующая на спутник со стороны Земли, равна произведению массы спутника на ускорение, с которым он движется:

Со стороны земли на спутник действует сила гравитационного притяжения, которая по закону всемирного тяготения равна:

где и массы спутника и Земли соответственно.

Так как спутник находится на некоторой высоте над поверхностью Земли, расстояние от него до центра Земли:

где радиус Земли.

Ньютон первый установил, что падение камня на Землю, движение планет вокруг Солнца, движение Луны вокруг Земли вызвано силой или гравитационным взаимодействием.

Между телами на расстоянии осуществляется взаимодействие посредством создаваемого ими гравитационного поля. Благодаря целому ряду опытных фактов, Ньютону удалось установить зависимость силы притяжения двух тел от расстояния между ними. Ньютоновский закон, названный законом всемирного притяжения, гласит, что два любых тела притягиваются друг к другу с силой, пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними. Закон называется всемирным или универсальным, так как описывает гравитационное взаимодействие между парой любых тел во Вселенной, которые обладают массой. Силы эти очень слабые, но для них не существует никаких преград.

Закон в буквенном выражении имеет вид:

Сила тяжести

Земной шар всем телам, падающим на Землю, сообщает одинаковое ускорение g = 9,8м/с2, называемое ускорением свободного падения. А это значит, что Земля действует, притягивает, все тела с силой, называемой силой тяжести. Это частный вид сил всемирного тяготения. Сила тяжести равна , зависит от массы тела m, измеряемой в килограммах (кг). Значение g = 9,8м/с2 берется приблизительным, на разных широтах и на разной долготе его значение немного меняется вследствие того, что:

  • радиус Земли меняется от полюса к экватору (что приводит к уменьшению значения g на экваторе на 0,18%);
  • вызываемый вращением центробежный эффект зависит от географической широты (уменьшает значение на 0,34%).

Невесомость

Предположим, что тело падает под действием силы тяжести. Другие силы на него не действуют. Это движение называется свободным падением. В тот промежуток времени, когда на тело будет действовать только Fтяж, тело будет находиться в невесомости. При свободном падении вес человека исчезает.

Вес это сила, с которой тело растягивает подвес или действует на горизонтальную опору.

Состояние невесомости испытывает парашютист во время прыжка, человек во время прыжка с трамплина, пассажир самолета падающий в воздушную яму. Невесомость мы ощущаем лишь в течение очень малого времени, всего несколько секунд. А вот космонавты, находящиеся в космическом корабле, который летит по орбите с выключенными двигателями, испытывают невесомость длительное время. Космический корабль находиться в состоянии свободного падения, и тела перестают действовать на опору или подвес – находятся в невесомости.

Искусственные спутники земли

Преодолеть притяжение Земли возможно, если тело будет обладать определенной скоростью. Используя закон тяготения можно определить скорость, при которой тело массой m, обращаясь по круговой орбите вокруг планеты, не упадет на нее и будет ее спутником. Рассмотрим движение тела по окружности вокруг Земли. На тело, действует сила тяготения со стороны Земли. Из второго закона Ньютона имеем:

Так как тело движется по окружности с центростремительным ускорением:

Где r — радиус круговой орбиты, R = 6400 км — это радиус Земли, а h высота над поверхностью Земли, на которой движется спутник. Силу F, действующая на тело массой m равна , где Мз= 5,98*1024кг — масса Земли.
Имеем: . Выражаем скорость, она и будет называться первой космической — это наименьшая скорость, при сообщении которой телу, оно становится искусственным спутником Земли (ИСЗ).

Ее также называют круговой. Принимаем высоту равной 0 и находим эту скорость, она примерно равна:
Она равна скорости ИСЗ, обращающегося вокруг Земли по круговой орбите при отсутствии сопротивления атмосферы.
Из формулы можно увидеть, что скорость спутника не зависит от его массы, а это значит, искусственным спутником может стать любое тело.
Если придать телу большую скорость, то оно преодолеет Земное притяжение.

Второй космической скоростью называется наименьшая скорость, дающая возможность телу без воздействия каких-либо дополнительных сил преодолеть земное притяжение и стать ИСЗ Солнца.

Эту скорость назвали параболической, она соответствует параболической траектории теле в поле тяготения Земли (если отсутствует сопротивление атмосферы). Ее можно вычислить из формулы:

Здесь r – расстояние от центра Земли до места запуска.
У поверхности Земли . Есть и еще одна скорость, имея которую тело может покинуть солнечную систему и бороздить просторы космоса.

Третья космическая скорость, наименьшая скорость, позволяющая космическому кораблю, преодолеть Солнечное притяжение и покинуть Солнечную систему.

Эта скорость

В природе существуют различные силы, которые характеризуют взаимодействие тел. Рассмотрим те силы, которые встречаются в механике.

Гравитационные силы. Вероятно, самой первой силой, существование которой осознал человек, являлась сила притяжения, действующая на тела со стороны Земли.

И потребовались многие века для того, чтобы люди поняли, что сила тяготения действует между любыми телами. И потребовались многие века для того, чтобы люди поняли, что сила тяготения действует между любыми телами. Первым этот факт понял английский физик Ньютон. Анализируя законы, которым подчиняется движение планет (законы Кеплера), он пришёл к выводу, что наблюдаемые законы движения планет могут выполняться только в том случае, если между ними действует сила притяжения, прямо пропорциональная их массам и обратно пропорциональная квадрату расстояния между ними.

Ньютон сформулировал закон всемирного тяготения . Любые два тела притягиваются друг к другу. Сила притяжения между точечными телами направлена по прямой, их соединяющей, прямо пропорциональна массам обоих и обратно пропорциональна квадрату расстояния между ними:

Под точечными телами в данном случае понимают тела, размеры которых во много раз меньше расстояния между ними.

Силы всемирного тяготения называют гравитационными силами. Коэффициент пропорциональности G называют гравитационной постоянной. Его значение было определено экспериментально: G = 6,7 10¯¹¹ Н м² / кг².

Сила тяготения действующая вблизи поверхности Земли, направлена к её центру и вычисляется по формуле:

где g – ускорение свободного падения (g = 9,8 м/с²).

Роль силы тяготения в живой природе очень значительна, так как от её величины во многом зависят размеры, формы и пропорции живых существ.

Вес тела. Рассмотрим, что происходит, когда некоторый груз кладут на горизонтальную плоскость (опору). В первый момент после того, как груз опустили, он начинает двигаться вниз под действием силы тяжести (рис. 8).

Плоскость прогибается и возникает сила упругости (реакция опоры), направленная вверх. После того как сила упругости (Fу) уравновесит силу тяжести, опускание тела и прогиб опоры прекратятся.

Прогиб опоры возник под действием тела, следовательно, со стороны тела на опору действует некоторая сила (Р), которую называют весом тела (рис. 8, б). По третьему закону Ньютона вес тела равен по величине силе реакции опоры и направлен в противоположную сторону.

Р = - Fу = Fтяж.

Весом тела называют силу Р, с которой тело действует на неподвижную относительно него горизонтальную опору .

Поскольку сила тяжести (вес) приложены к опоре, она деформируется и за счёт упругости оказывает противодействие силе тяжести. Силы, развиваемые при этом со стороны опоры называются силами реакции опоры, а само явление развития противодействия - реакцией опоры. По третьему закону Ньютона сила реакции опоры равна по величине силе тяжести тела и противоположна ему по направлению.

Если человек на опоре движется с ускорением звеньев его тела, направленных от опоры, то сила реакции опоры возрастает на величину ma, где m – масса человека, а – ускорения с которыми движутся звенья его тела. Эти динамические воздействия можно фиксировать с помощью тензометрических устройств (динамограммы).

Вес не следует путать с массой тела. Масса тела характеризует его инертные свойства и не зависит ни от силы тяготения, ни от ускорения, с которым оно движется.

Вес тела характеризует силу, с которой оно действует на опору и зависит как от силы тяготения, так и от ускорения движения.

Например, на Луне вес тела примерно в 6 раз меньше, чем вес тела на Земле, Масса же в обоих случаях одинакова и определяется количеством вещества в теле.

В быту, технике, спорте вес часто указывают не в ньютонах (Н), а в килограммах силы (кгс). Переход от одной единицы к другой осуществляется по формуле: 1 кгс = 9,8 Н.

Когда опора и тело неподвижны, то масса тела равна силе тяжести этого тела. Когда же опора и тело движутся с некоторым ускорением, то в зависимости от его направления тело может испытывать или невесомость или перегрузку. Когда ускорение совпадает по направлению и равно ускорению свободного падения, вес тела будет равен нулю, поэтому возникает состояние невесомости (МКС, скоростной лифт при опускании вниз). Когда же ускорение движения опоры противоположно ускорению свободного падения, человек испытывает перегрузку (старт с поверхности Земли пилотируемого космического корабля, Скоростной лифт, поднимающийся вверх).

В данном параграфе мы напомним Вам о силе тяжести, центростримительном ускорение и весе тела

На каждое тело, находящееся на планете, действует гравитация Земли . Сила, с которой Земля притягивает каждое тело, определяется по формуле

Точка приложения находится в центре тяжести тела. Сила тяжести всегда направлена вертикально вниз .


Силу, с которой тело притягивается к Земле под действием поля тяготения Земли, называют силой тяжести. По закону всемирного тяготения на поверхности Земли (или вблизи этой поверхности) на тело массой m действует сила тяжести

F т =GMm/R 2

где М - масса Земли; R - радиус Земли.
Если на тело действует только сила тяжести, а все другие силы взаимно уравновешены, тело совершает свободное падение. Согласно второму закону Ньютона и формуле F т =GMm/R 2 модуль ускорения свободного падения g находят по формуле

g=F т /m=GM/R 2 .

Из формулы (2.29) следует, что ускорение свободного падения не зависит от массы m падающего тела, т.е. для всех тел в данном месте Земли оно одинаково. Из формулы (2.29) следует, что Fт = mg. В векторном виде

F т =mg

В § 5 было отмечено, что поскольку Земля не шар, а эллипсоид вращения, ее полярный радиус меньше экваториального. Из формулы F т =GMm/R 2 видно, что по этой причине сила тяжести и вызываемое ею ускорение свободного падения на полюсе больше, чем на экваторе.

Сила тяжести действует на все тела, находящиеся в поле тяготения Земли, однако не все тела падают на Землю. Это объясняется тем, что движению многих тел препятствуют другие тела, например опоры, нити подвеса и т. п. Тела, ограничивающие движение других тел, называют связями. Под действием силы тяжести связи деформируются и сила реакции деформированной связи по третьему закону Ньютона уравновешивает силу тяжести.

На ускорение свободного падения влияет вращение Земли. Это влияние объясняется так. Системы отсчета, связанные с поверхностью Земли (кроме двух, связанных с полюсами Земли), не являются, строго говоря, инерциальными системами отсчета - Земля вращается вокруг своей оси, а вместе с ней движутся по окружностям с центростремительным ускорением и такие системы отсчета. Эта неинерциальность систем отсчета проявляется, в частности, в том, что значение ускорения свободного падения оказывается различным в разных местах Земли и зависит от географической широты того места, где находится связанная с Землей система отсчета, относительно которой определяется ускорение свободного падения.

Измерения, проведенные на разных широтах, показали, что числовые значения ускорения свободного падения мало отличаются друг от друга. Поэтому при не очень точных расчетах можно пренебречь неинерциальностью систем отсчета, связанных с поверхностью Земли, а также отличием формы Земли от сферической, и считать, что ускорение свободного падения в любом месте Земли одинаково и равно 9,8 м/с 2 .

Из закона всемирного тяготения следует, что сила тяжести и вызываемое ею ускорение свободного падения уменьшаются при увеличении расстояния от Земли. На высоте h от поверхности Земли модуль ускорения свободного падения определяют по формуле

g=GM/(R+h) 2.

Установлено, что на высоте 300 км над поверхностью Земли ускорение свободного падения меньше, чем у поверхности Земли, на 1 м/с2.
Следовательно, вблизи Земли (до высот нескольких километров) сила тяжести практически не изменяется, а потому свободное падение тел вблизи Земли является движением равноускоренным.

Вес тела. Невесомость и перегрузки

Силу, в которой вследствие притяжения к Земле тело действует на свою опору или подвес, называют весом тела. В отличие от силы тяжести, являющейся гравитационной силой, приложенной к телу, вес - это упругая сила, приложенная к опоре или подвесу (т. е. к связи).

Наблюдения показывают, что вес тела Р, определяемый на пружинных весах, равен действующей на тело силе тяжести F т только в том случае, если весы с телом относительно Земли покоятся или движутся равномерно и прямолинейно; В этом случае

Р=F т =mg.

Если же тело движется ускоренно, то его вес зависит от значения этого ускорения и от его направления относительно направления ускорения свободного падения.

Когда тело подвешено на пружинных весах, на него действуют две силы: сила тяжести F т =mg и сила упругости F yп пружины. Если при этом тело движется по вертикали вверх или вниз относительно направления ускорения свободного падения, значит векторная сумма сил F т и F уп дает равнодействующую, вызывающую ускорение тела, т. е.

F т + F уп =mа.

Согласно приведенному выше определению понятия "вес", можно написать, что Р=-F yп. Из формулы: F т + F уп =mа. с учетом того, что F т =mg, следует, что mg-mа=-F yп . Следовательно, Р=m(g-а).

Силы F т и F уп направлены по одной вертикальной прямой. Поэтому если ускорение тела а направлено вниз (т.е. совпадает по направлению с ускорением свободного падения g), то по модулю

P=m(g-a)

Если же ускорение тела направлено вверх (т. е. противоположно направлению ускорения свободного падения), то

Р = m = m(g+а).

Следовательно, вес тела, ускорение которого совпадает по направлению с ускорением свободного падения, меньше веса покоящегося тела, а вес тела, ускорение которого противоположно направлению ускорения свободного падения, больше веса покоящегося тела. Увеличение веса тела, вызванное его ускоренным движением, называют перегрузкой.

При свободном падении a=g. Из формулы: P=m(g-a)

следует, что в таком случае Р=0, т. е. вес отсутствует. Следовательно, если тела движутся только под действием силы тяжести (т. е. свободно падают), они находятся в состоянии невесомости . Характерным признаком этого состояния является отсутствие у свободно падающих тел деформаций и внутренних напряжений, которые вызываются у покоящихся тел силой тяжести. Причина невесомости тел заключается в том, что сила тяжести сообщает свободно падающему телу и его опоре (или подвесу) одинаковые ускорения.

Абсолютно на все тела во Вселенной действует волшебная сила, каким-то образом притягивающая их к Земле (точнее к ее ядру). Никуда не сбежать, нигде не укрыться от всеобъемлющего магического тяготения: планеты нашей Солнечной системы притягиваются не только к огромному Солнцу, но и друг к другу, все предметы, молекулы и мельчайшие атомы также взаимно притягиваются. известный даже маленьким детям, посвятив жизнь изучению этого явления, установил один из величайших законов — закон всемирного тяготения.

Что такое сила тяжести?

Определение и формула давно и многим известны. Напомним, сила тяжести — это определенная величина, одно из естественных проявлений всемирного тяготения, а именно: сила, с которой всякое тело неизменно притягивается к Земле.

Сила тяжести обозначается латинской буквой F тяж.

Сила тяжести: формула

Как вычислить направленную на определенное тело? Какие другие величины необходимо знать для того? Формула расчета силы тяжести довольно проста, ее изучают в 7-м классе общеобразовательной школы, в начале курса физики. Чтобы ее не просто выучить, но и понять, следует исходить из того, что сила тяжести, неизменно действующая на тело, прямо пропорциональна его количественной величине (массе).

Единица силы тяжести названа по имени великого ученого— Ньютон.

Сила тяжести (гравитация) всегда направлена строго вниз, к центру земного ядра, благодаря ее воздействию все тела равноускоренно падают вниз. Явления тяготения в повседневной жизни мы наблюдаем повсеместно и постоянно:

  • предметы, случайно или специально выпущенные из рук, обязательно падают вниз на Землю (или на любую препятствующую свободному падению поверхность);
  • запущенный в космос спутник не улетает от нашей планеты на неопределенное расстояние перпендикулярно вверх, а остается вращаться на орбите;
  • все реки текут с гор и не могут быть обращены вспять;
  • бывает, человек падает и травмируется;
  • на все поверхности садятся мельчайшие пылинки;
  • воздух сосредоточен у поверхности земли;
  • тяжело носить сумки;
  • из облаков и туч капает дождь, падает снег, град.

Наряду с понятием "сила тяжести" используется термин "вес тела". Если тело расположить на ровной горизонтальной поверхности, то его вес и сила тяжести численно равны, таким образом, эти два понятия часто подменяют, что совсем не правильно.

Ускорение свободного падения

Понятие "ускорение свободного падения" (иначе говоря, связано с термином "сила тяжести". Формула показывает: для того чтобы вычислить силу тяжести, нужно массу умножить на g (ускорение св. п.).

"g" = 9,8 Н/кг, это постоянная величина. Однако более точные измерения показывают, что из-за вращения Земли значение ускорения св. п. неодинаково и зависит от широты: на Северном полюсе оно = 9,832 Н/кг, а на знойном экваторе = 9,78 Н/кг. Получается, в разных местах планеты на тела, обладающие равной массой, направлена разная сила тяжести (формула же mg все равно остается неизменной). Для практических расчетов было принято решение на незначительные погрешности этой величины и пользоваться усредненным значением 9,8 Н/кг.

Пропорциональность такой величины, как сила тяжести (формула доказывает это), позволяет измерять вес предмета динамометром (похож на обычный бытовой бизмен). Обратите внимание, что прибор показывает только силу, так как для определения точной массы тела необходимо знать региональное значение "g".

Действует ли сила тяжести на любом (и близком, и далеком) расстоянии от земного центра? Ньютон выдвинул гипотезу, что она действует на тело даже при значительном удалении от Земли, но ее значение снижается обратно пропорционально квадрату расстояния от предмета до ядра Земли.

Гравитация в Солнечной системе

Есть ли Определение и формула относительно других планет сохраняют свою актуальность. С одной лишь разницей в значении "g":

  • на Луне = 1,62 Н/кг (в шесть раз меньше земного);
  • на Нептуне = 13,5 Н/кг (почти в полтора раза выше, чем на Земле);
  • на Марсе = 3,73 Н/кг (более чем в два с половиной раза меньше, чем на нашей планете);
  • на Сатурне = 10,44 Н/кг;
  • на Меркурии = 3,7 Н/кг;
  • на Венере = 8,8 Н/кг;
  • на Уране = 9,8 Н/кг (практически такое же, как у нас);
  • на Юпитере = 24 Н/кг (почти в два с половиной раза выше).