Портал о ремонте ванной комнаты. Полезные советы

Ветрогенератор и его вертикальные и горизонтальные конструкции их характеристики и основные виды для преобразовании энергии ветра. Парусные ветрогенераторы - раздел Парусный ветрогенератор самодельный

Единственная проблема, которую решают ветрогенераторы парусного типа – малая скорость ветра. Благодаря особой конструкции парусный ветрогенератор реагирует даже на малейшее дуновение ветра, начиная уже от скорости 1 м/с. Естественно, эта уникальная особенность только положительно сказывается на продуктивности и высоком КПД этих ветровых установок.

Лопастный генератор имеет существенный недостаток – требуется умеренно сильный или сильный ветер для эффективной работы. Для генераторов парусной конструкции теперь неважно ни место, где она установлена, ни высота. Эти неоспоримые преимущества позволяют вырабатывать электроэнергию практически в любой точке земного шара.

Преимущества:

  • минимально допустимая скорость ветра – 0,5 м/с;
  • мгновенное реагирование на поток воздуха;
  • легкие лопасти парусного устройства, что облегчает общий вес конструкции;
  • снижение риска повреждений из-за пропуска ветровой нагрузки на парусный ветрогенератор;
  • высокая ремонтопригодность при эксплуатации;
  • доступность к материалу в отличии от композитного пластика;
  • возможность соорудить своими руками всю конструкцию;
  • разнообразие конструкций (вертикальные, горизонтальные);
  • отсутствие радиопомех при работе;
  • полная безопасность для человека и окружающей среды;
  • простота при монтаже, компактность;
  • возможность обеспечения электричеством всего дома и приборов, которые в нем находятся.

Недостаток всего один - потеря преимущества при очень сильных ветрах.

Как выбрать

На сегодняшний день существует огромный выбор среди ветрогенераторов парусного типа. Тип, мощность, вес конструкции – все это отражается на эксплуатации и вырабатываемой электроэнергии, а значит, что эти параметры нужно учитывать при выборе.

Монтаж ветряка «Ветролов»

Не менее важно уметь разбираться в трех составляющих:

  1. Ротор. Диаметр ротора влияет на производительность, а она в свою очередь зависит от скорости вращения и габаритов всего ротора.
  2. Вес общий и отдельных частей. Огромный вес не понадобится, но нужно, чтобы вся установка имела жесткость для большей устойчивости.
  3. Лопасти. Лопасти должны иметь определенные аэродинамические показатели, а также быть надежно выполнены, так как именно они испытывают наибольшую нагрузку.

Место установки

Парусные ветрогенераторы имеют один неоспоримый плюс – их можно устанавливать практически в любом более-менее доступном месте. Однако все же лучше будет позаботиться о том, чтобы площадка была максимально удалена от больших объектов. Постройки, деревья – все это не столько препятствует потоку воздушных масс, сколько создает ненужную в данном случае турбулентность. Завихрения от посторонних объектов можно избежать, если поставить всю конструкцию на предварительно сооруженную башню. Ее высота должна быть выше близ расположенной постройки.


Законы аэродинамики таковы, что используя половину возможности ветра можно получить всего 1/8 его энергии. И наоборот – поймав максимально возможный поток, можно получить в восемь раз больше энергии. Также следует учитывать один очень важный нюанс – взгляд со стороны закона.

Законодательство большинства стран предусматривает штрафы с последующим изыманием ветряка любого типа (в том числе и воздушного генератора), если его мощность превышает норму. Норма может колебаться в зависимости от страны и региона. Поэтому лучше изучить закон, чтобы не попасть в нелепую ситуацию – понести расходы при монтаже, а потом еще и в виде наказания от государства.

Какие бывают разновидности

  1. Тип Савониуса. Два и более полуцилиндра вращаются вокруг оси. Преимущество: вращение постоянное, независимое от направления ветра. Недостаток: низкий КПД.
  2. Ортогональный тип. Лопасти параллельны оси и находятся на некотором расстоянии от нее. Преимущество: больший КПД. Недостаток: создаваемый шум при работе.
  3. Тип Дарье. Две или более плоских полосы дугообразной формы. Преимущество: малошумный, низкая себестоимость. Недостаток: требует системы старта для начала работы.
  4. Геликоидный тип. Несколько (обычно три) лопастей отдалены от оси и имеют наклон. Преимущество: конструкция более долговечна. Недостаток: большая стоимость.
  5. Многолопастный тип. Два ряда лопастей вокруг оси. Преимущество: очень высокая производительность. Недостаток: шум при работе.

Самое главное – мощность

Если задумать изготовить ветровую электростанцию парусного типа, необходимо хотя бы приблизительно просчитать, какую мощность она будет давать. Существует универсальная формула, позволяющая это сделать:

Мощность (кВт) = плотность воздуха (кг/м3) * радиус площади лопастей (м2) * скорость ветра (м/с) * 3,14

Принцип работы ветряка

Учитываем:

  1. Плотность воздуха меняется с повышением и понижением температура. К примеру, летом плотность воздуха примерно 1,1 кг/м3, а зимой 1,2-1,4 кг/м3.
  2. Скорость ветра – величина непостоянная.
  3. Повышение радиуса лопасти пропорционально повышает мощность.

Покупная станция или сделанная своими руками – в любом случае это экономия в перспективе. Современный мир уже давно перешел на , теперь пришла и наша очередь.

Любителям пообсуждатьо КИЭВ посвящается!!!

В отечественной аэродинамике рассматривающих(иногда) вопросы утилизации энергии ветровых потоков, абсолютно необоснованно введено ушлыми (именно так) предпринимателями определение - КИЭВ коэффициент использования энергии ветра...

Эта условная единица(для модели плоских ветров), призвана заменить обычный КПД.Данный "показатель"притянут в теорию слабых потоков за уши (по аналогии и методе - цикла Карно)

Математически верная логика термодинамических процессов призвана описывать циклы имеющие конечный (базовый) потенциал располагаемой энергии и позволяет определить следующее: если Вы имеете тепловую машину мощностью 100 л.с. (при КПД 30%), то реально на полезную работу приходится всего - 30 л.с.Иначе: эти 30% и являются полной (100%) - располагаемой (реально имеющейся в наличии) мощности для данной конструкции.

Для тепловых машин - лучшего инструментария пока нет.

Иначе все в практической аэродинамике. Для определения разности давлений (над крылом и под крылом) используется количество движения которое определяется как скорость объекта при движении в воздухе, или (движение воздуха в котором находится объект). Следовательно, давно постулированное г.Бернулли утверждение, о зависимости давления от скорости здесь уместно, а это значит, что в конечном счете аэродинамический К - зависит от разности давлений, - именно поэтому объект перемещается из области повышенного давления - в область пониженного давления.Заглянем в атлас (любой) авиационных профилей, и обратим внимание на скорость потоков обтекания профиля при которых перепад давлений максимальный. Они(скорости) все без исключения лежат в области расположенной гораздо ВЫШЕ чем скорость имеющегося в наличии повседневного ветра(3м/сек).

Можно ли в здравом уме применять в малом диапазоне ветров(скоростей обтекания) данную методу, не имея результатов реальной продувки? Оказывается "можно"- имея на вооружении модель плоского ветра,"теоретики"разных рангов доказывают что лопастные ветроколеса - более полно утилизируют энергию малых ветров.А будет ли вообще вращаться "лопастник" на слабых ветрах?Разумеется нет,как нет и повода даже думать о применении лопастников на территории СНГ в качестве альтернативных источников энергии утилизирующих слабые потоки, - из практики известно что на повседневных ветрах СНГ лопастники не работают,никогда не работали и работать не будут.Для этого надо принудительно вращать лопастное ветроколесо, или... ждать когда Всевышний ниспошлет сильный ветер.

Парусники работают - во всем диапазоне ветров.

Проектировщики (мощных) лопастных быстроходных ветроколес довольно грамотно используют ветра. Начиная со скорости 10м/сек. - комлевая (широкая) часть лопасти - движет лопасть (как парус) а при наличии сильного ветра концевые профили (достигая больших скоростей) используют уже появившиеся высокие скорости потоков обтекания. Вполне разумно. Достаточно практично. Именно на больших скоростях обтекания и необходимо профилировать,и "закручивать" (по размаху) лопасть. Вот только располагаемая мощность - (энергия воздушного потока) приходящая на ВСЮ ометаемую площадь распределяется так: центральная часть лопастного колеса - двигатель, а периферийная часть - преобразователь энергии (уже высоких) скоростей ветра в крутящий момент на валу генератора.

Двойное преобразование располагаемой энергии - позволяет превосходно использовать энергию ветра от 10-12 метров в секунду,(решая заодно проблему быстроходности генераторов).Задача парусного ветроколеса, - использовать всю располагаемую мощность приходящую на ометаемую площадь. Поскольку, полезную работу могут произвести только реальные силы (рождающиеся при срабатывании ПЕРЕПАДА давлений,то «разбор полетов», необходимо производить инструментами привычными (???) для аэростатики, чем для аэродинамики.

Согласитесь, стоящий под напором ветра телеграфный столб - совершает работу. Работу - по ОТКЛОНЕНИЮ приходящего на него потока. Энергию для этой работы поставляет - тот же ветер. Если этот столб подпилить, работа совершится в ЯВНОМ виде столб просто - упадет. Если на двух столбах натянуть парус (и подпилить), ЯВНОЙ работы совершится БОЛЬШЕ. Если эти столбы закрепить на ВАЛУ редуктора, работа уже будет производится как по отклонению воздушного потока, так и по вращению вала. А если еще и оптимизировать конструкцию приблизительно так как выполнено парусное ветроколесо (вверху слева) - Вы будете иметь ветродвигатель для малых ветров.

Но вернемся к «анализам»парусных ветроколес (блуждающим в Интернете) . Математический аппарат заслуживает внимания, но общая беда кабинетных теоретиков - извращение физической картины процесса. Действительно, применяя к своим рассуждениям вполне корректное (2.1.1)- для неподвижной пластины, и совершая вместе с автором небольшой экскурс в анналы общей аэродинамики, уже в (2.1.4) мы с Вами получаем точную цену - на... дрова.

Дело в том, что пластина(парус) не "как бы убегает" т.е.- движется (с потоком)по потоку - а вполне реально находится в потоке и более того - отклоняет поток за пределы ветроколеса, смещаясь в плоскости перпендикулярной к оси вращения ветроколеса.

Иначе,- незадачливые оппоненты, не ленятся рассматривать ПРОСТО парус поднятый на лодке которая плывет под воздействием ветра в ту сторону куда он дует.
Налицо явно выражена любовь к Н.Е Жуковскому, с его так и не принятой в практической аэродинамике статьёй
«Ветряные мельницы типа НЕЖ. Статья 3».

Ветроколесу парусного типа вообще-то присуща иная картина обтекания. Называется она КОНИЧЕСКАЯ. А ветроколесо в целом представляет собой кольцевое бесконечное щелевое крыло которого 95 лет назад (время написания статьи) - не существовало даже в больном воображении. Это сейчас совместная работа предкрылка с крылом - хорошо описана для больших скоростей обтекания и понятна. Но серьёзных работ по сверхмалым воздушным потокам обтекания нет. И быть не может потому что физические величины такие как ДАВЛЕНИЕ (перед парусом скорость ветра упала-давление возросло) - рассматриваются также и в АЭРОСТАТИКЕ. Поэтому мне более подходит морская терминология, говоря о - тандеме СТАКСЕЛЬ и ГРОТ.

Именно яхтсмены первыми оценили практически то, что зашифровали кабинетчики - КИЭВ(я ничего не имею против "лопастников"- на сильных ветрах эти машины работали и будут работать (не взирая на киэвы) - на благо человека.

На рисунках выше представлены парусное ветроколесо и, -"пропеллер". Как видим, диаметры ометаемых площадей равны. А вот рабочие органы - различаются не только конструкцией. Они отличаются прежде всего - размерами, а значит и рабочей ПЛОЩАДЬЮ. В теории винтов так и озвучивается - площадь рабочих органов. А соотношение ометаемой площади к суммарной площади рабочих органов носит название - коэффициент заполнения винта. Если уж пояснять совсем проще, то "пропеллер" наложенный на ометаемую площадь(мысленно)укроет приблизительно только 10 процентов всей ометаемой площади. Парусное ветроколесо в аналогичных условиях закроет почти ВСЮ ометаемую площадь. Комментарии нужны?

Если рассмотрим картину обтекания лопастного ветроколеса в конкретном(любом) АЗИМУТАЛЬНОМ положении, то легко догадаемся что элементарная струйка воздуха проходящая МЕЖДУ лопастями - НЕ СОВЕРШАЕТ работы даже бесполезной. Струйка проходит сквозь сито… С парусным ветроколесом такой номер (извините), не прокатит - приходя на ометаемую площадь, элементарная струйка воздуха натыкается (да простят меня специалисты)на ПАРУС. Далее все просто - она отклоняется на 90градусов (если удерживать колесо) и выходит (на периферию),- ЗА ПРЕДЕЛЫ ометаемой площади(ускоряясь).Или, (если колесо не удерживать) она отклонится на МЕНЬШИЙ угол, отдав энергию парусу, который в свою очередь передаст ПОЛЕЗНУЮ энергию на вал генератора. А уж если вообще отказаться от псевдоученого анализа, и повернуться лицом к практике, то - на полигоне часто приходится видеть такую картину, парусное ветроколесо ВЭУ 10.380(сх) при ветре 5м/сек. не могут удержать от вращения целая группа студентов.

Лопастной ветряк при таком ветре не стоит удерживать. Потому как вообще не раскручивается. Но вернемся к нашим оппонентам. Во всевозможных опусах обнаруживаем, что »...если пластина неподвижна, то полезная мощность равна нулю. Если пластина движется со скоростью ветра, то она не испытывает давления и мощность тоже равна нулю...» - Это конечно - от большого ума.По мнению авторов, движущаяся по ветру лодка с поднятым парусом - картина нереальная в силу своей бесполезности. Стоящая же на якоре, но с поднятым парусом, вроде как бы и реальная картина, но полезная мощность опять - равна нулю.

Наивная ошибочность заключается в полном непонимании работы паруса. Дело в том, что парус совершает работу и когда движется и когда стоит, сопротивляясь ветру. В последнем случае, ВСЯ мощность приходящего потока превращается в работа паруса по отклонению воздушного потока приходящего на ометаемую площадь. Требуется немного - эту работу направить в полезное русло (сняться с якоря,- или снять с тормоза ветряк).Лопасть же, установленная на лодке вместо паруса, потребует для этих целей очень сильного ветра. То же самое - и для лопастного ветряка. А вот парус движет лодку (крутит генератор) и на малых ветрах. На больших ветрах он просто производит БОЛЬШЕ полезной работы. Чтобы убедиться в этом достаточно укрепить на лодке ЛОПАСТНОЕ ветроколесо и на другой лодке парусное ветроколесо,результаты "эксперимента" понятны...В"научных работах" оппонентов нередко звучит "... Т.е. для достижения максимального КИЭВ скорость пластины должна быть в три раза меньше скорости ветра."- оставляю без комментариев, так как понятно - парус реагирует на ЛЮБОЙ ветер и создает необходимый ПЕРЕПАД давлений. Остальное все от лукавого.

Рассмотрим небольшое (крайний справа верху) «кино»: здесь представлен рабочий образец парусного ветрячка из Прибалтики, созданный специально для проверки возможностей парусного ветряка. Чертежи конструктор, не приобретал, пользовался методом ППП (пол, палец, потолок) и интуицией, но говорить о КПД данного ветроколеса все равно стоит. Он выше чем у лопастника (того же диаметра), во всем ДИАПАЗОНЕ ветров, начиная от 0,5 м.сек.Это выводы сравнительного анализа произведенным самим умельцем. Но нас интересуют все прелести парусного ветроколеса, которую и можно отследить на этом экземплярчике.

Понятно что, подход ветра (к ометаемой площади) осуществляется с тыльной стороны. Паруса наполнены ветром в нашу сторону, и чуть под углом. Для специалиста ясно, что ветер притормаживаясь перед колесом и совершив работу выпускается через щель (задняя неподкрепленная кромка паруса).Через эти щели согласитесь, уходит уже отработанный воздух(подпираемый вновь прибывающими порциями воздуха).Более научно это описал г. Бернулли постулируя следующее: при снижении скорости потока растет давление. В результате мы имеем повышенное давление с НАВЕТРЕННОЙ стороны ветроколеса и РАЗРЯЖЕНИЕ с подветренной стороны. Именно срабатывание энергии этого перепада давлений и определяет количественно работу ветряка. Лопастному ветроколесу, такое и не снилось… Вспомните, - между лопастями ветер беспрепятственно проникает на противоположную сторону ветроколеса - ВЫРАВНИВАЯ давления. А это-плохо.

Если нет разности (перепада) давлений, то о какой РАБОТЕ может идти речь вообще? Следовательно - основной недостаток лопастного ветроколеса (для малых ветров): очерченная концами лопастей площадь(ометаемая) используется до нельзя СКВЕРНО. Данное утверждение может опровергать только - глупец.Аргумент: если оппонирующего субъекта принудительно заставить выпрыгнуть из летящего самолета предложив на выбор (вместо парашюта) лопастное и парусное ветроколесо держу пари - несчастный ИНТУИТИВНО выберет парусное спасательное средство.

Кстати, серийный мотодельтаплан МД-20 c «вертушкой» (вместо штатного крыла) успешно отработал сезон на авиахимработах показав превосходные результаты - при ветре 5 м.сек, длина разбега со штатным 100 литровым хим.баком составила 20(!)метров, скороподъёмность - 4м. Вернемся к нашему кино. Поскольку ветрячок был поднят над землей всего на 1.5 м. Турбулизированый приземный слой воздуха (смотрите в каком квадранте ометаемой площади «флатерит»задняя кромка) - неважно наполняет парус. Но поднятое над землей (проверено!) на высоту ОДНОГО диаметра - парусное ветроколесо включается в работу полностью. А далее - еще интереснее: уходящий из рабочей зоны отработанный воздух (подпираемый сзади)попадая в конический раструб - вновь ускоряется (вспомним о давлении с наветренной стороны).Отметим немаловажное - вектор ускорения направлен ТАНГЕНЦИАЛЬНО к ветроколесу. Если вспомнить закон сохранения количества движения,то половина энергии кинетического движения воздуха (речь о втором, дополнительном ускорении) достается - опять тому же парусному колесу. Ибо щель является ни чем иным как -обычным реактивным соплом, создающим пропульсивную силу.

Прирост реактивной составляющей, при 10м.сек. равен 40 процентов от всей приходящей на ометаемую площадь энергии ветра. О том что пусковой момент, больше рабочего момента (лопастники отдыхают) и говорить теперь уже не надо. Для особо воинствующих оппонентов, попробую объяснить суть разницы между парусом и лопастью на основе молекулярно - кинетической теории, не прибегая к мат.аппарату.Часто пишут специалисты,(обидно что именно - специалисты) приводя следующий аргумент: в воздушном потоке (конкретного)сечения заключена (конкретная) энергия.

Природа происхождения «аргумента»- проста. В известную формулу кинетической энергии подставляется плотность и скорость (относительно чего?) в квадрате. Затем всё это удовольствие разделено на 2.Но пилить дрова все же лучше пилой, чем рубанком… Рекомендую обратиться к процессу ВЫВОДА этой формулы. Для того чтобы тело куда двигалось (летело, бежало…) необходимо столько же энергии отдать и 2 телу с которым, то что движется (летит и прыгает) ВЗАИМОДЕЙСТВОВАЛО для получения необходимого количества движения. Именно поэтому в формуле потенциальной энергии ОТСУТСТВУЕТ дробная черта. А в кинетической - имеется.

В случае с ветроколесом (любого типа) мы работаем с полной энергией потока так, как не МЫ с Вами запускали в движение поток воздуха (ветер). И обратно. Рассматривая крыло самолета (винт вертолета) мы обязаны руководствоваться только КИНЕТИЧЕСКОЙ энергией(делить на 2) поскольку МЫ сами заставляем тело (самолет) - двигаться в воздухе и никак не наоборот. И весь запас энергии надо возить с собой в виде топлива. Иначе он просто не полетит.

Дело в том, что энергия ветра, образовавшаяся в результате гравитационных взаимодействий - является для обычных граждан 100 процентной (полной энергией) которую лопасть обязана снять с заданной (конкретной) площади. Обязана. Но, - не может физически - размеры лопасти несопоставимы с площадью сечения струи. Рассматривая воздушный поток (в свете МКТ) - обнаружим что ветер это - направленный (упорядоченный)поток молекул воздуха. Каждая молекула несет энергию(неважно кто ей придал энергию - важно как ее грамотно снять) - а мы вдруг на ее пути поставили лопасть.

Отрикошетив, молекула отдала часть энергии и обогнув препятствие кратковременно изменила направление собственного движения (турбулизировала поток) и подхваченная соседками унеслась дальше унося и свой импульс - а значит и энергию. Справка: любое изменение направление движения материальной точки ДРУГИМ субъектом физического мира - является ЭНЕРГООБМЕННЫМ процессом. Угол изменения направления движения молекулы,- определяет КОЛИЧЕСТВО энергии переданной второму телу. Остановка молекулы препятствием полностью - означает 100 процентную передачи энергии препятствию.

Затормозив, а точнее отклонив большее количество молекул, мы получаем и больше энергии. Догадайтесь какое из двух рассматриваемых ветроколес тормознет больше молекул? Правильно. Но и "лопастники"(если их принудительно) вращать-соберут (отклонят)эти самые молекулы. И чем больше угловая скорость вращения лопасти тем с большим количеством молекул они столкнутся(снимут энергию),а на больших скоростях подключится еще и аэродинамика...

Парусное колесо вообще не нужно вращать для этих целей. Оно сразу контактирует со всеми молекулами приходящими на ометаемую им площадь. А получая энергию от множества молекул одновременно - просто крутится вместе с валом редуктора.

Все ли преимущества парусного колеса представлены здесь? Нет конечно. Открою еще одну «тайну». Парусное ветроколесо не разбрасывает элементарные струйки воздуха в разные стороны, а бережно собирает их в свои гибкие конуса(рабочие органы), и выпускает через реактивные щели за пределы ометаемой площади. И куда бы не попала струйка воздуха - на край паруса или в центр, она будет остановлена, перенаправлена, вновь ускорена (подходящими струями - давлением)и выпущена через реактивную щель, отдав всю первоначальную энергию и половину (теперь уже точно кинетической) энергии полученной во время ускорения в «желобе»конуса.

Это уже теория построена на ОБЪЕМНОЙ модели воздуха.Откуда взялась эта вторая кинетическая энергия на ускорение? Ну, если ветер не отменили - из давления созданного прибывающими на ометаемую площадь элементарными струйками воздуха.

Ну такие они,- струйки.

Владимир из Таганрога

Говорят, новое - хорошо забытое старое. И энергетика здесь, похоже, не является исключением. Ожегшись на Чернобыле, столкнувшись в ряде мест с угрозой энергетического кризиса, человечество все чаще обращает свой взор на технические решения, незаслуженно списанные в прошлом в архив. Использование даровой силы ветра - в числе именно таких решений. Приходят к ним в своих творческих изысканиях и любители мастерить все своими руками (см., например, «М-К» № 4/84, 5/86, 6/90, 7/92|.

В этой связи предлагаемая публикация сделанная по материалам американского журнала «Механик иллюстрейтед», думается, представляет особый интерес и актуальность для многих наших читателей.

Идея - обуздать ветер, обеспечив тем самым сеЬя даровой электроэнергией,- несомненно, весьма заманчива. Но выпускаемые промышленностью ветроэнергоустановки не всегда подходят для размещения их, например, возле загородного дома. Да и цены на них астрономические.

Альтернативой может стать вполне доступная с точки зрения семьи со средним достатком самодельная ветроэнергоустановка - такая, как изображена на публикуемых иллюстрациях. За исключением синхронного электрогенератора переменного тока, ее конструкция не содержит дорогих и остродефицитных деталей и узлов. Проста (а следовательно, надежна в работе, легка в изготовлении и наладке) кинематика. А энергетические возможности таковы, что при средней скорости ветра Увср=4,8 м/с. они с лихвой обеспечат потребность в электроэнергии небольшого дома с усадьбой и хозяйственными постройками.

«Изюминка» всей конструкции здесь - ветровое колесо. Во-первых, оно лопастное. Уступая простейшему роторному некоторой архаичностью своего внешнего вида, напоминающего средневековые мельницы, с которыми сражался небезызвестный Дон-Кихот, этот ветряк выигрывает в главном: мощности, отдаваемой в нагрузку. Во-вторых, в паре с ветром в данном случае работает… парус - на каждой из трех лопастей с изменяемой площадью Б* и самоограничением, предусмотренным для сильных ветров.

Дело в том, что лопастной узел у крыла ветряка состоит из жесткой передней кромки, ребер соответствующего сечения и «закрутки», обеспечивающих оптимальный режим работы концевой, средней частей и основания, а также задней кромки, натяжение которой обеспечивает стальной трос. Парус лопасти - из пропитанного синтетическим лаком капрона. Он натянут на остов с закреплением прижимной планкой на распорке-основании (см. рис.), а благодаря тросу - всегда упруг. Ткань после пропитки синтетическим лаком отнюдь не потеряла своей эластичности, и лопасть способна изменять форму в ответ на порывы ветра. Автоматически принимает и наилучший для каждой конкретно складывающейся ветровой нагрузки угол тангажа.

Ну а случись - налетит ураган. Что тогда? Да ничего страшного не произойдет. Трос, задающий натяжение задней кромке, напряжен так, что при скоростях ветра, превышающих рабочий диапазон, парус опадает, становится как бы недействующим: возникает режим самоограничения, причем - автоматически.

Из других технических решений, удачно вписавшихся в конструкцию данной ветроэлектроустановки, нельзя не отметить также простоту и надежность выполнения опорно-поворотного узла, съем электроэнергии в нагрузку, использование в кинематической схеме не углового редуктора, а обычных цепных передач, успешное размещение практически всей кинематики в капсуле обтекателя. Неплохо зарекомендовала себя в деле и сама капсула.

Особенности изготовления основных узлов, как и всей рассматриваемой ветроэлектроустановки,- следствие ее оригинальности.

Взять, к примеру, переднюю кромку лопастного узла. По сути своей это кессонная конструкция. Для нее нужен остов: лонжерон с соответствующими взаимосвязанными элементами. А их не сделать без шаблонов.

Шаблонов потребуется шесть. Два - для образующих ребра

блоков, три - для сборочного приспособления лопастного узла (стапеля) и один - для исходной заготовки ребра. При их изготовлении требуются максимальные аккуратность и сосредоточенность, чистота разметки.

1 – потребитель электроэнергии (нагрузка), 2 синхронный электрогенератор с трансмиссией в капсуле обтекателя. 3 - лонжерон лопасти (3 шт.), 4 - кок ветроколеса, 5 - лопасть парусная (3 шт.), 6 опорно-поворотный узел, 7 - мачта из металлических ферм, 8 – оттяжки.

1- ветроколесо трехлопастное парусное, 2- шарикоподшипник радиально-упорный (2 шт.), 3 - труба опорная квадратного сечения, 4 - вал ведущий, 5 - шарикоподшипник радиальный (2 шт.), 6 - промежуточный вал, 7 - передача силовая с приводной роликовой цепью ПР-19,05, 8 - обтекатель, 9 - передача силовая с приводной роликовой цепью ПР-12,7, 10 - генератор синхронный мощностью 1200 Вт, 11 - стойка-труба внутренняя, 12 - подшипник радиальный самосмазывающнйся, 13 - стойка-труба внешняя, 14 - подпятник, 15 - мачта нз металлических ферм.

1 - планка прижимная (полоса сечением 3X25 мм, АЛ9-1), 2 - распорка-основание (отрезок склепанных и «эпоксидированных» вместе алюминиевых уголков 25X25 мм с приданием нужной конфигурации), 3 - парус (пропитанное синтетическим лаком капроновое полотно массой 113,4 г), 4 - большая укосина (12-мм алюминиевый прокат), 5 - особой конфигурации), 9 - ребро-«сандвич» (склепанные и «эпоксидированные» вместе заготовки из 6-мм листа АЛ9-1; 3 шт.), 10 - кронштейн стыковочный (20-мм отрезок алюминиевого уголка 25X25 мм, 6 шт.), 11 - малая укосина (12-мм алюминиевый прокат), 12 - законцовка (отрезок склепанных вместе и «эпоксидированных» алюминиевых уголков 25Х 25 мм), 13 - гильза свинцовая (12-мм отрезок сплющиваемого цилиндра с наружным диаметром 12 мм и внутренним - 3 мм, 2 шт.), 14 - оболочка троса (два последовательно составленные отрезка полиэтиленовой трубки), 15 - трос натяжной.

1 - полоса усиления (75-мм ширины капрон) законцовочной части, 2 - припуск шва 20-мм, 3 - заготовка полотна паруса (капрон, сложенный вдвое), 4 - полоса усиления основания (75-мм ширины капрон).

1 - ребро-«саидвнч» (3 шт.), 2 - «носик» раскорки-законцовки, 3 - кронштейн стыковочный (6 шт.), 4 - хвостовик распорки-законцовки и (такая же деталь) распорка-середина, 5 - распорка-основание.

1 - формующий брусок (20-мм фанера), 2 - кронштейн стыковочный, 3 - контур деревянного блока, а равно - второго слоя у ребра-«сандвича», 4 - первый слой ребра-«саидвича».

1 - базис, 2 - распорка, 3 - стойка-фиксатор лонжерона лопасти (2 шт.), 4 - шаблон для выполнения работ на основании паруса, 5 - плаика усиления (3 шт.), 6 - стойка-фиксатор середины паруса, 7 - стойка для работ на законцовке. Все детали стапеля изготавливаются из 20-мм фанеры, крепление - на шурупах. Стрелками указаны направления, в которых прикрепляются ребра-«сандвичн» к стапелю на предусмотренные для них места.

1 - вал ведущий (диаметр 25 мм, длина 1500 мм, Сталь 45), 2 - кок ветроколеса (Д16), 3 - держатель (полоса сечения 3×25 мм, Ст3, 3 шт., 4 - спица ступицы приварная (стальной уголок 25 X 25 мм, 3 шт.), 5 - ступица {Сталь 20), 6 подшипниковый узел ведущего вала (2 шт.), 7 - горизонтальный кронштейн (стальной уголок 25X 25 мм, 2 шт.), 8 - труба опорная стальная (в сечении - квадрат 50Х 50 мм, толшина стенки 4 мм) с наварными квадратными стальными 4-мм щечками на концах, 9 - звездочка Z3=45 (Сталь 45), 10 - цепь ПР 12,7, II - кронштейн вертикальный (300-мм отрезок стального швеллера № 8, приваренный к боковым стенкам опорной трубы), 12 - гайка М14 с шайбой Гровера (4 шт.), 13 - промежуточный вал (диаметр 20 мм, длина 350 мм, Сталь 45), 14 - подшипниковый узел промежуточного вала (2 шт.), 15 - болт М14 (4 шт.), 16 - цепь ПР-19,05, 17 - звездочка Z2= 18 (Сталь 45), 18 - звездочка Z1 = 42 (Сталь 45), 19 - болт М18 (4 шт.), 20 звездочка Z4= 17 (Сталь 45), 21 - кронштейн коробчатый (размеры по месту установки в зависимости от типа генератора, Ст3, 2 шт.), 22-генератор электрический, синхронный, мощностью 1200 Вт, 23 - опорно-поворотный узел, 24 - стойка-труба стальная внутренняя (длина 90 мм, внешний диаметр 60 мм, толшина стенки 4,5 мм), 25 - укосина приварная (305 мм отрезок стального уголка 25X 25 мм, 2 шт.), 26 - шайба стопорная (4 шт.), 27 - гайка М18 (4 шт.), 28 - гайка М12 самоконтрящаяся прорезная (6 шт.), 29 - лонжерон лопасти (1830-мм отрезок трубы с внешним диаметром 50 мм и толщиной стенки 3,5 мм, АЛ9-1, режим термообработки Т6, 3 шт.), 30 - болт М12 (6 шт.).

1- шпангоут основной (многослойная фанера, 3 шт.), 2 - продольная панель обшивки люка (12-мм фанера, 2шт.), 3 - лонжерон (рейка из многослойной фанеры, вырезанная с изгибом после 3-го шпангоута, 4 шт.), 4 - соединение болтовое М16 с самофиксацией (8 шт.), 5 - кронштейн-направляющая (100-мм отрезок стального уголка 40Х Х40 мм, 4 шт.), 6 - полоса обшивки (фанера, суживающаяся по ширине после прогиба на 3-м шпангоуте, 23 шт.), 7 - шпангоут переходной (20-мм фанера), 8 - шпангоут концевой, 9 - покрытие стеклопластиковое, 10 - насадка конусообразная (максимальный диаметр 386 мм, пенопласт) ,11 - поперечная панель обшивки люка (20-мм фанера).

1- кронштейн приварной (стальной уголок 25Х 25 мм), 2- заклепка (4 шт.), 3 - кабель электрический, 4 - клемма н подвод к щетке контактной (2 шт.), 5 - жила электрокабеля (2 шт.), 6 - 5-мм пластина стеклотекстолитовая, 7 - упор-кронштейн (алюминиевый уголок 12Х 12 мм, 2 шт.), 8 - пружина с контактным винтом (2 шт.), 9 - гнездо-направляющая (алюминиевая труба квадратного сечения с элементами крепежа, 2 шт.), 10 - щетка контактная (2 шт.) ,11 - электропривод изолированный (2 шт.), 12 - стойка-труба стальная внутренняя, 13 - кольцо латунное с контактным винтом (2 шт.), 14 - втулка текстолитовая с двумя установочными винтами, 15 - шайба (Ст3) гребенчатая с двумя установочными винтами, 16 - подшипник радиальный самосмазывающийся (АФГМ), 17-стойка-труба стальная наружная, 18 - подпятник (БрАЖ9-4), 19 - болт М24 с гайкой и фиксацией затяжки.

Два шаблона (см. рис. 6, поз. 1) приклеивают к отрезку 20-мм фанеры. Следуя контуру, вырезают ножовкой или лобзиком две образующие ребро фанерные подкладки. Просверливают 5-мм отверстия под центр лонжерона и разметки сборки. Закругление радиусом 2,5 мм (для загибания фланца) и пятиградусный срез заднего угла выполняют с помощью рашпиля.

Шаблон (поз. 4 рис. 6) с 15-мм кромкой под фланец приклеивают к 6-мм алюминиевому листу АЛ9-1, прошедшему термообработку Т4. Получившуюся заготовку аккуратно вырезают; просверливают лонжеронный центр, а для правильной установки на стапеле - соответствующие отверстия. Это своеобразный новый шаблон для изготовления еще восьми таких заготовок (по 3 шт. на каждую лопасть).

Ребра-«сандвичи» получают, «прослаивая» заготовки между двух формующих блоков (подкладок). Жесткой фиксации добиваются, вставляя 5-мм болты через отверстие в стапеле и отверстие лонжеронного центра в формующие блоки с заготовками. А чтобы «прослаивание» шло успешнее, будущие «сандвичи» зажимают в кузнечных тисках. Отгибания фланцев в нужные стороны достигают, используя резиновый молоток.

Формовку фланца завершают, используя свинцовый мягкий припой. После чего получившееся ребро вынимают, подрезают задний край, чтобы максимально приспособить к лонжерону. Теперь дело за остальными деталями лопасти.”

Стыковочные кронштейны изготавливают из алюминиевого уголка 25X25 мм. Из него же выполняют распорки для удержания каната и натяжения задней кромки в основании, в середине и на законцовке лопасти. Делают их весьма своеобразно: не из одного, а их двух отрезков алюминиевого уголка, склепанных и «эпоксидированных» вместе. Длина такой заготовки 2,4 м. В своем сечении она напоминает букву Т. Высокое качество шва достигается тщательной очисткой поверхностей до их соединения, для чего используют сильные моющие средства с последующим «прополаскиванием водой и протиранием до блеска металлической «путанкой».

Нужной формы у распорок добиваются, воспользовавшись ножовкой по металлу. А вырез для лонжерона, заклепочные и тросовое отверстия высверливают электродрелью. Как, впрочем, и отверстия в распорке-основании для прикрепления впоследствии прижимной планки, чтобы надежно удерживать парус на лопасти даже во время самых больших ветровых нагрузок.

Что касается стыковочных кронштейнов, то они приклепываются и «эпоксидируются» и к распоркам (см. иллюстрации), и к ребрам-«сандвичам», и к лонжерону лопасти. Причем удобнее это делать на специальном приспособлении - стапеле, благодаря которому обеспечивается единообразное выполнение лопастей и правильно устанавливаются углы тангажа.

Вот одна из таких операций.

Ребра-«сандвичи» прикрепляют болтами к стапелю на предусмотренные для них места (в направлениях, указанных на рис. 7 соответствующими стрелками, и по установочным отверстиям, которые сделаны как в стапеле, так и в самих ребрах). Затем аккуратно укладывают, начиная с законцовки, «боковые полочки» тросовых распорок на предназначенные для них «постаменты», располагающиеся под требуемыми углами к базису торцы фанерных выступов: стойки 7, стойки-фиксатора 6 и шаблона 4 (см. рис. 7). Лопастный лонжерон продевают в образовавшиеся на стапеле отверстия, благо полукруглые выемки радиусом 25 мм для этого специально и предусмотрены.

Выполняют разметку заклепочных отверстий в лонжероне. Потом последний вынимают, сверлят в нем отверстия. А установив лонжерон вновь в стапеле, приклепывают и «эпоксидируют» стыковочные кронштейны.

Алюминиевую обшивку передней кромки лопасти выполняют из 6-мм листа АЛ9-1, предварительно изогнув его в виде параболы. Причем последнее лучше сделать на ровном полу с помощью длинной доски, наложенной ребром по оси изгиба. Упершись коленями в доску, руками, всем телом создают необходимое давление на лист, добиваясь получения желанной формы.

Следующая операция - прикрепление обшивки к лопастному скелету. При этом целесообразно воспользоваться специальными С-образными зажимами (на иллюстрациях не показаны).

Начиная с законцовки, просверливают заклепочные отверстия в покрытии, лонжероне и в ребрах. Соединяемые детали «эпоксидируют» и приклеивают. А после того как «эпоксид» затвердеет окончательно, выполняют обрезку «избыточного» алюминия с опиловкой образовавшихся острых краев.

Теперь - несколько слов о задней кромке лопасти. Монтируется она с 3-мм гибким стальным тросом, который продевают через предназначенные для него отверстия в распорках. Трос устанавливают в хлорвиниловые трубки и закрепляют у законцовки, зажав его в свинцовой гильзе. После чего на лопастный скелет натягивают парус.

Столь ответственную операцию лучше выполнять вдвоем. Один человек встает на стол, удерживая в своих руках лопасть таким образом, чтобы распорка-основание находилась внизу, а трос задней кромки располагался вертикально с навешенной на конце двухпудовой гирей. Тогда другой (помощник), убедившись, что требуемое натяжение достигнуто, запрессовывает на тросе вторую, находящуюся у распорки-основания свинцовую гильзу. Излишек троса и гильзы обтачивают. А «открытый» конец паруса заворачивают с последующим закреплением на распорке-основании с помощью прижимной планки и болтов с гайками.

Остальные лопасти изготавливают аналогичным образом. Что касается других узлов и деталей, то их выполнение особых трудностей, как правило, ни у кого не вызывает. То же можно сказать и о сборке всей ветроэлектроустановки в целом. Проста и отладка. Дерзайте!

Материал подготовил к публикации Н. КОЧЕТОВ

Проблемой использования ветрогенераторов в Украине, России и многих других европейских странах и странах СНГ является низкая среднегодовая скорость ветра в местах наибольшей потребности в электроэнергии (3-5 метра в секунду, а очень часто дует ветер со скоростью менее 3 метров в секунду). Для решения этой проблемы применяют лопастные ветряки на больших высотах (50-100 метров) или устанавливают их в ветряных местах, например, в ущельях, на пригорках, в прибрежных местах и т.д. Или покупают ветрогенератор мощностью в 10 кВт для того, чтобы он вырабатывал 2 кВт, но это как минимум дороговато и далеко не всем эти методы подходят. Что делать? Парусный ветрогенератор !
Если обратиться к цифровым показателям – видно, что заявленные мощности лопастные ветрогенераторы выдают при скоростях ветра 8-15 м/с; при этом минимальная скорость ветра (так называемая скорость страгивания) 2,5-4 м/с., максимальная эксплуатационная – 25-45 м/с. Несколько другие показатели имеют многолопастные и стаксельные (парусные) ветряки. Минимальная скорость ветра 0,5-1,5 м/с. Максимальная мощность при скоростях ветра 6-20 м/с, максимальная эксплуатационная скорость ветра – 15-30 м/с.
Разница характеристик определяется в основном «заполненностью» окружности, которую описывают лопасти. Чем полнее - тем ниже рабочая скорость ветра. Таким образом ветряки парусного типа, наоборот, даже в слабые ветра (ниже 3 м/сек) вырабатывают электроэнергию.

Преимущества парусных ветрогенераторов (ветряков):
- минимальная скорость ветра для страгивания 0,5-1,5 м/с;
- парус практически мгновенно подстраивается под силу и направление ветра, что обеспечивает возможность работы парусного ветряка в широком диапазоне скоростей ветра, от самых малых до буревых (50-60 м/с);
- легкие лопасти большой площади, чтобы «снять» энергию с минимального ветра и меньше инерционность;
- лопастник половину порывов ветра просто пропускает из-за своей высокой инерционности;
- парус дешевле и легче лопасти, что упрощает ремонт, выше ремонтопригодность;
- доступность материала лопасти (парусина, парашютный шелк и пр.) в отличие от композитных стеклопластиков, спецсплавов и сот лопастей вертикальных ветряков;
- лопасти можно сложить буквально в трубочку и легко транспортировать;
- такой ветряк можно сделать своими руками, поскольку тут не очень важна точность и балансировка лопастей;
- парусные ветряки могут быть вертикальными и горизонтальными;
- не создаются шумовые инфразвуки и радиопомехи (паруса радипрозрачны);
- благодаря сравнительно медленному вращению парусов-лопастей обеспечивается безопасность для человека и животных;
- компактность, безопасность, простота монтажа и обслуживания;
- невысокая стоимость вырабатываемой энергии.

Недостатки парусных ветрогенераторов (ветряков):
- при усилении ветра они теряют преимущество, а на сильных ветрах проигрывают лопастним ветрогенераторам из-за усиления трения о воздух.
- имеет меньшую по сравнению с лопастником быстроходность, поэтому нужен более тихоходный генератор или мультипликатор с больши передаточным числом;

При среднем и сильном ветре парусный ветряк выгоден и для отопления домов, дач, ферм, курятников, теплиц, парников и пр. В остальных случаях - парусный ветряк гарантировано обеспечивает электроснабжение для получения света и работы бытовых электроприборов, особенно удобна работа параллельно с общественной энергосетью с помощью простейшего АВР. Даже небольшая ВЭУ обеспечит данную возможность.

Парусные ветряки конструкции Gravio, могут быть реализованы как с горизонтальной, так и вертикальной осью вращения ветроколеса. И главной особенностью ветряков (ВЭУ) Gravio является то, что эти ветряки парусные.

То ли дело, что парусники «визуально» тянут нас в прошлое и не так эстетичны, как красивые современные лопастники! Но НАМ ТО ЧТО НУЖНО? Красота и эстетика? Или РАБОТА агрегата(электричество) при слабом ветре??? А тем более, что парусники для того и собираются, чтобы там, где лопастники будут просто стоять и глаз радовать своею эстетикой(при 3х-4х м/с), они (парусники), несмотря на свою громоздкость и НЕэстетику, уже ПАХАЛИ и ВЫРАБАТЫВАЛИ мощность!

Несмотря на то, что к самому Gravio можно относиться подозрительно, так как он ведет на своем сайте и форуме не совсем «прозрачно», тем не менее вопрос не в самой личности Gravio, а в тех идеях, которые он излагает в своих кратких статьях, ответах и комментариях на форумах.

Основная часть сухопутных парусников Gravio является наследниками древнего критского ветроколеса, различные варианты которого продолжают использовать в ветряных мельницах Испании, Греции и в других странах Средиземноморья. Учитывая, что цивилизация Крита — это одно из направлений прарусской цивилизации, можно считать, что парусное ветроколесо - это одно из великих изобретений русского народа. когда-то проживающего на Крите.

По сравнению с лопастями классических мельниц, например, голландских или российских, парусные лопасти проще в изготовлении, эксплуатации или ремонте. У паруса есть одна важная особенность, которой нет у классической лопасти. Парус практически мгновенно подстраивается под силу и направление ветра, что обеспечивает возможность работы парусного ветряка в широком диапазоне скоростей ветра, от самых малых до буревых (50-60 м/с). Так как паруса располагаются по периферии ветроколеса, то даже при слабом ветре такое ветроколесо передает на ось электрогенератора заметную мощность, тогда как сечение лопасти у классического лопастного ветряка уменьшается от центра к периферии, поэтому лопастные ветряки, не способны утилизировать слабый ветер.

Данные парусные ветрогенераторы являются изобретениями Gravio, такой ник взял себе, наверное, Каплий Владимир Иванович, часть изобретений которого лежат на Луне и Венере.

В конструкции парусных ветряков Gravio есть много положительных качеств. Они отличаются от традиционных лопастных ветроустановок дешевизной, абсолютной экологичностью, способностью использовать энергию слабых ветров (2...5м/сек) и все это на фоне полного отсутствия больших вращающихся разнесенных масс, которые обеспечивают довольно высокую степень безопасности для окружающих. К примеру, классическую лопастную вертушку- маломерку нельзя поставить на пасеке из-за вероятности смертоубийства пчел и другой живности. Отсутствуют звуковые возмущения, вибрации и другие отрицательные стороны традиционных ветряных систем.

Предлагаемые Gravio парусные ветрогенераторы лучше всего подходят для сельской местности. Сельскому жителю, имеющему подворье, постоянно приходиться запаривать корм животным или обогревать теплицы. Кроме того, для нужд хозяйства нужна и механическая энергия, к примеру, для водоподъема или прессования самана. В зависимости от комплектации парусные ВЭУ поставляются в однофазном исполнении и трехфазном. Типовые модели: 1кВт, 4кВт, 10кВт. Максимальная мощность - до 100кВт. Комплект: поворотная опора (механизм крепления на штангу), мотор-редуктор, ветро-колесо, две запасных лопасти (паруса). Напряжение на выходе: 380В. Дополнительная комплектация: аккумуляторные батареи, зарядное устройство, инвертор, электроника, мачта, крепеж.

Эта информация дает достаточно полное представление, что парусные ветроустановки Gravio могли бы при массовом применении в сельской местности и в небольших городах решить многие проблемы, которые из-за плохого управления энергосетями России возникают всё чаще и чаще. Возможно, стоимость кватт*часа на таких установках будет выше, чем получаемого из общей сети, но кто будет возмещать убытки в случае отключения населенного пункта от общей сети? Почему при расчете стоимости кватт*часа никогда не учитывается упущенная выгода, а иногда и прямые убытки тех, у кого отключается электроэнергия? Что-то не было слышно, чтобы Чубайс покрыл убытки Москвы и москвичей при известной энергетической катастрофе в Москве. Люди немного помучились, и на этом всё завершилось. Добрый у нас народ при безжалостном государстве с безсовестными чиновниками и бизнесменами.

О достоинстве ВЭУ с горизонтальной осью вращения прекрасно высказался сам Gravio. Но у Gravio есть варианты ВЭУ c вертикальной осью вращения. И опять вместо жесткой лопасти в ветроколесе используется «гибкий» парус. В качестве устройства, передающее вращение от оси ветроколеса к оси электрогенератора, используется задний мост автомобиля: от УАЗа до КАМАЗа. Соответственно и мощность таких ВЭУ достигает 100 кватт и более.

Естественно, варианты парусных ВЭУ, предложенные Gravio, не единственные. Многие авторы, как в Европе, так и в США, работают над различными вариантами парусных ветроколес.

Основными достоинствами его конструкций является то, что они доступны для самостоятельного изготовления сельскими жителями из широко распространенных комплектующих. Электрогенератор - асинхронный мотор подходящей мощности, который подключается по схемам, хорошо известным любому грамотному электрику. Паруса имеют простое крепление и противобуревую защиту, в качестве которой выступает стальной трос заранее рассчитанного диаметра, который при достижении критической силы ветра просто рвется, предоставляя парусам полоскаться по ветру. Для приведения колеса в «боевую» готовность достаточно заменить порванный трос на новый.

Колеса парусников вращаются медленно, но обладают большой мощностью и моментом. Удалённое относительно оси вращения расположение парусов позволяет утилизировать струйки слабого ветра. В принудительной раскрутке парусник не нуждается. Ткань паруса очень гибко «подстраивается» под любой ветер, что позволяет извлекать из ветра мощность (энергию) с максимально возможным КПД без применения специальной системы управления. Ориентируется ветроколесо по ветру самостоятельно, а благодаря малой инерции и высокой «флюгерности» ветроколесо осуществляет это быстро и без потери мощности. При большом радиусе парусного колеса ему не страшны неравномерности в скорости ветра по высоте, так как каждый парус, работая на общую ось, гибко сам подстраивается под силу и направление локального воздушного потока. Кроме того, паруса в «рабочем» состоянии, создают между собой систему воздушных каналов, воздух в которых перенаправляется в таком направлении, что обеспечивается увеличение мощности ветроколеса, в том числе за счет эффекта присоединенных масс, так как увеличение скорости воздуха между парусами приводит к падению давления между ними, а значит, в эти зоны будет устремляться воздушные потоки, «пролетающие» рядом с ветроколесом. Т.е. эффективная площадь сечения воздушного потока, которая будет формировать итоговую мощность ВЭУ больше ометаемого парусником сечения, если брать в расчет диаметр колеса. И весь этот воздушный поток «перехватывается» парусами с высокой эффективностью.

Известно, что мощность ветряка прямопропорциональна ометаемой площади и кубу скорости ветра. Максимальная мощность ветряка с ометаемой площадью в 1 кв.м. при скорости ветра в 10 м/с примерно составляет 600 ватт. Так как парусный ветряк быстрее поворачивается по ветру, чем классический лопастник, самостоятельно вращается при ветрах слабее 1 м/с, то за одинаковое время эксплуатации «парусник» при той же ометаемой площади снимет с ветра больше энергии, чем классический лопастник. Парусник при изменении направления ветра на 180 градусов этот факт просто не заметит, так как его колесо будет вращаться и в том и другом случае в одну сторону. Классический лопастник половину порывов ветра просто пропускает из-за своей высокой инерционности, а на слабые порывы ветра, даже дующие вдоль оси ветроколеса, не в состоянии реагировать. При изменении направления сильного ветра на 180 градусов лопастник изменит свое вращение на обратное. А это уже совсем плохо. Тут никакой флюгер не поможет.

Выбирая источник энергии, т.е., сеть или парусник, необходимо учитывать не только параметры ВЭУ, но самое главное, надо заранее выяснить, а есть ли, вообще, смысл устанавливать ветряк. Мощность ветряка должна соответствовать мощности ветров на выбираемом участке земли и заданной высоте. При наличии большого количества солнечный дней остановить свой выбор на солнечных батареях и солнечных коллекторах. Но в любом случае иметь собственный безтопливный источник энергии в наше бурное и сложное время всегда полезно. Важно, чтобы государство этому процессу хотя бы не мешало. И тогда сухопутная парусная флотилия будет способна решить проблемы энергетической безопасности многих граждан России, особенно в сельской местности. Лишняя энергия в наше время - то же самое, что лошадь и меч в Средние Века.

Таким образом, Парусный Ветрогенератор:
* Позволяет эффективно использовать энергию ветра с высоким КПД за счет использования большой площади ветрового потока;

* За счет сравнительно медленного движения парусных элементов (по сравнению с ветротурбинами), безопасна для человека и животных, не создает шумовых инфразвуков и радиопомех;

* Работает в приземных воздушных потоках. Турбулентность приземного воздушного потока мало влияет на эффективность работы;

Цель использования технологии «Парусных Ветрогенераторов» заключается:
1. В максимальном использовании мощности ветрового потока, то есть входит в установку ветер 10 м/сек, а после отбора энергии выходит ветер 2-3 м/сек.

2. В компактности, безопасности, и в упрощении монтажа и обслуживания.

3. В снижении шума, отсутствии вредных инфразвуков, безопасности для птиц и человека.

4. В снижении стоимости вырабатываемой электроэнергии

5. В исключении необходимости в сверхвысоких технологиях уровня самолётостроения, как это имеет место при создании лопастных ВЭУ.

6. В доступности Парусной ВЭУ для широкого потребления.

7. В наземном базировании установок, что также влияет на удобство обслуживания и в итоге на цену киловатта.