Портал о ремонте ванной комнаты. Полезные советы

Какое свойство генетического кода называется универсальностью. Что такое генетический код: общие сведения

- единая система записи наследственной ин­формации в молекулах нуклеиновых кислот в виде последова­тельности нуклеотидов. Генетический код основан на использо­вании алфавита, состоящего всего из четырех букв-нуклеотидов, отличающихся азотистыми основаниями: А, Т, Г, Ц.

Основные свойства генетического кода следующие:

1. Генетический код триплетен. Триплет (кодон) - последовательность трех нуклеотидов, кодирующая одну аминокислоту. Поскольку в состав бел­ков входит 20 аминокислот, то очевидно, что каждая из них не может кодироваться одним нуклеотидом (поскольку в ДНК всего четыре типа нуклеотидов, то в этом случае 16 аминокислот оста­ются незакодированными). Двух нуклеотидов для кодирования аминокислот также не хватает, поскольку в этом случае могут быть закодированы только 16 аминокислот. Значит, наименьшее число нуклеотидов, кодирующих одну аминокислоту, оказыва­ется равным трем. (В этом случае число возможных триплетов нуклеотидов составляет 4 3 = 64).

2. Избыточность (вырожденность) кода является следствием его триплетности и означает то, что одна аминокислота может кодироваться несколькими трип­летами (поскольку аминокислот 20, а триплетов - 64). Исключение составляют метионин и триптофан, которые кодируются только одним триплетом. Кроме того, некоторые триплеты вы­полняют специфические функции. Так, в молекуле иРНК три из них УАА, УАГ, УГА - являются терминирующими кодонами, т. е. стоп-сигналами, прекращающими синтез полипептидной цепи. Триплет, соответствующий метионину (АУГ), стоящий в начале цепи ДНК, не кодирует аминокислоту, а выполняет функцию инициирования (возбуждения) считывания.

3. Одно­временно с избыточностью коду присуще свойство однозначнос­ти, которое означает, что каждому кодону соответствует только одна определенная аминокислота.

4. Код коллинеарен, т.е. по­следовательность нуклеотидов в гене точно соответствует после­довательности аминокислот в белке.

5. Генетический код непере­крываем и компактен, т. е. не содержит «знаков препинания». Это значит, что процесс считывания не допускает возможности перекрывания колонов (триплетов), и, начавшись на определенном кодоне, считывание идет непрерывно триплет за триплетом вплоть до стоп-сигналов (терминирующих кодонов). Например, в иРНК следующая последовательность азотистых оснований АУГГУГЦУУААУГУГ будет считываться только такими трип­летами: АУГ, ГУГ, ЦУУ, ААУ, ГУГ, а не АУГ, УГГ, ГГУ, ГУГ и т. Д. или АУГ, ГГУ, УГЦ, ЦУУ и т. д. или еще каким-либо образом (допустим, кодон АУГ, знак препинания Г, кодон УГЦ, знак пре­пинания У и Т. п.).

6. Генетический код универсален, т. е. ядер­ные гены всех организмов одинаковым образом кодируют инфор­мацию о белках вне зависимости от уровня организации и систематического положения этих организмов.

Каждый живой организм обладает особым набором белков. Определенные соединения нуклеотидов и их последовательность в молекуле ДНК образуют генетический код. Он передает информацию о строении белка. В генетике была принята определенная концепция. Согласно ей, одному гену соответствовал один фермент (полипептид). Следует сказать, что исследования о нуклеиновых кислотах и белках проводились в течение достаточно продолжительного периода. Далее в статье подробнее рассмотрим генетический код и его свойства. Будет также приведена краткая хронология исследований.

Терминология

Генетический код - это способ зашифровки последовательности белков аминокислот с участием нуклеотидной последовательности. Этот метод формирования сведений характерен для всех живых организмов. Белки - природные органические вещества с высокой молекулярностью. Эти соединения также присутствуют в живых организмах. Они состоят из 20 видов аминокислот, которые называются каноническими. Аминокислоты выстроены в цепочку и соединены в строго установленной последовательности. Она определяет структуру белка и его биологические свойства. Встречается также несколько цепочек аминокислот в белке.

ДНК и РНК

Дезоксирибонуклеиновая кислота - это макромолекула. Она отвечает за передачу, хранение и реализацию наследственной информации. ДНК использует четыре азотистых основания. К ним относятся аденин, гуанин, цитозин, тимин. РНК состоит из тех же нуклеотидов, кроме того из них, в составе которого находится тимин. Вместо него присутствует нуклеотид, содержащий урацил (U). Молекулы РНК и ДНК представляют собой нуклеотидные цепочки. Благодаря такой структуре образовываются последовательности - "генетический алфавит".

Реализация информации

Синтез белка, который кодируется геном, реализовывается при помощи объединения мРНК на матрице ДНК (транскрипции). Также происходит передача генетического кода в последовательность аминокислот. То есть имеет место синтез полипептидной цепи на мРНК. Для зашифровки всех аминокислот и сигнала окончания белковой последовательности достаточно 3-х нуклеотидов. Эта цепь называется триплетом.

История исследования

Изучение белка и нуклеиновых кислот проводилось длительное время. В середине 20 века, наконец, появились первые идеи о том, какую природу имеет генетический код. В 1953 году выяснили, что некоторые белки состоят из последовательностей аминокислот. Правда, тогда еще не могли определить их точное количество, и по этому поводу велись многочисленные споры. В 1953 году авторами Уотсоном и Криком было опубликовано две работы. Первая заявляла о вторичной структуре ДНК, вторая говорила о ее допустимом копировании при помощи матричного синтеза. Кроме того, был сделан акцент на то, что конкретная последовательность оснований - это код, несущий наследственную информацию. Американский и советский физик Георгий Гамов допустил гипотезу кодирования и нашел метод ее проверки. В 1954 году была опубликована его работа, в ходе которой он выдвинул предложение установить соответствия между боковыми аминокислотными цепями и "дырами", имеющими ромбообразную форму, и использовать это как механизм кодирования. Потом его назвали ромбическим. Разъясняя свою работу, Гамов допустил, что генетический код может являться триплетным. Труд физика стал одним из первых среди тех, которые считались близкими к истине.

Классификация

По истечении нескольких лет предлагались различные модели генетических кодов, представляющие собой два вида: перекрывающиеся и неперекрывающиеся. В основе первой было вхождение одного нуклеотида в состав нескольких кодонов. К ней принадлежит треугольный, последовательный и мажорно-минорный генетический код. Вторая модель предполагает два вида. К неперекрывающимся относятся комбинационный и "код без запятых". В основе первого варианта лежит кодировка аминокислоты триплетами нуклеотидов, и главным является его состав. Согласно "коду без запятых", определенные триплеты соответствуют аминокислотам, а остальные нет. В этом случае считалось, что при расположении любых значащих триплетов последовательно другие, находящиеся в иной рамке считывания, получатся ненужными. Ученые полагали, что существует возможность подбора нуклеотидной последовательности, которая будет удовлетворять этим требованиям, и что триплетов ровно 20.

Хотя Гамов с соавторами ставили под сомнение такую модель, она считалась наиболее правильной на протяжении следующих пяти лет. В начале второй половины 20-го века появились новые данные, которые позволили обнаружить некоторые недочеты в "коде без запятых". Было выявлено, что кодоны способны провоцировать синтез белка в пробирке. Ближе к 1965 году осмыслили принцип всех 64 триплетов. В результате обнаружили избыточность некоторых кодонов. Другими словами, последовательность аминокислот кодируется несколькими триплетами.

Отличительные особенности

К свойствам генетического кода относятся:

Вариации

Впервые отклонение генетического кода от стандартного было обнаружено в 1979 году во время изучения генов митохондрий в организме человека. Далее выявили еще подобные варианты, в том числе множество альтернативных митохондриальных кодов. К ним относятся расшифровка стоп-кодона УГА, используемого в качестве определения триптофана у микоплазм. ГУГ и УУГ у архей и бактерий нередко применяются в роли стартовых вариантов. Иногда гены кодируют белок со старт-кодона, отличающийся от стандартно используемого этим видом. Кроме того, в некоторых белках селеноцистеин и пирролизин, которые являются нестандартными аминокислотами, вставляются рибосомой. Она прочитывает стоп-кодон. Это зависит от последовательностей, находящихся в мРНК. В настоящее время селеноцистеин считается 21-ой, пирролизан - 22-ой аминокислотой, присутствующей в составе белков.

Общие черты генетического кода

Однако все исключения являются редкостью. У живых организмов в основном генетический код имеет ряд общих признаков. К ним относятся состав кодона, в который входят три нуклеотида (два первых принадлежат к определяющим), передача кодонов тРНК и рибосомами в аминокислотную последовательность.

Ведущий научный журнал Nature сообщил об обнаружении второго генетического кода – такого себе «кода внутри кода», который был недавно взломан молекулярными биологами и компьютерными программистами. Более того, для того чтобы его выявить, они использовали не эволюционную теорию, а информационные технологии.

Новый код получил название Код Сплайсинга. Он находится внутри ДНК. Этот код контролирует основной генетический код очень сложным, однако, предсказуемым образом. Код сплайсинга управляет тем, как и когда происходит сборка генов и регулирующих элементов. Раскрытие этого кода внутри кода помогает пролить свет на некоторые давнишние тайны генетики, которые всплыли на поверхность после проведения Проекта по расшифровке полной последовательности генома человека. Одна из таких тайн заключалась в том, почему в таком сложном организме, как человеческий, существует всего лишь 20 000 генов? (Ученые ожидали обнаружить намного больше.) Почему гены разбиваются на сегменты (экзоны), которые разделяются некодирующими элементами (интроны), а затем после транскрипции соединяются вместе (т.е. сплайсируются)? И почему гены включаются в одних клетках и тканях, и не включаются в других? На протяжении двух десятилетий молекулярные биологи пытались выяснить механизмы генетической регуляции. Эта статья указывает на очень важный момент в понимании того, что происходит на самом деле. Она не дает ответы на все вопросы, но она демонстрирует, что внутренний код существует. Этот код – система передачи информации, которую можно так понятно расшифровать, что ученые могли бы прогнозировать, как в определенных ситуациях и с необъяснимой точностью может вести себя геном.

Представьте, что в соседней комнате вы слышите оркестр. Вы открываете дверь, заглядываете внутрь и видите в комнате трех или четырех музыкантов, играющих на музыкальных инструментах. Это то, на что, по словам Брендона Фрея, участвовавшего в раскрытии кода, похож человеческий геном. Он говорит: «Мы смогли обнаружить только 20,000 генов, но мы знали, что они образуют огромное количество белковых продуктов и регулирующих элементов. Как? Один из методов называется альтернативным сплайсингом» . Различные экзоны (части генов) могут собираться разными способами. «Например, три гена белка нейрексина могут создавать более 3000 генетических посланий, которые помогают управлять системой связей мозга» , - говорит Фрей. Тут же в статье говорится о том, что ученым известно, что 95% наших генов имеют альтернативный сплайсинг, и в большинстве случаев в разных типах клеток и тканей транскрипты (молекулы РНК, образующиеся в результате транскрипции) экспрессируются по-разному. Должно быть что-то, что управляет тем, как собираются и экспрессируются эти тысячи комбинаций. В этом и состоит задача Кода Сплайсинга.

Читатели, которые хотят получить беглый обзор открытия, могут прочитать статью в Science Daily под названием «Исследователи, взломавшие ‘Код сплайсинга’, раскрывают тайну, лежащую в основе биологической сложности» . В статье говорится: «Ученые из университета Торонто получили фундаментально новое представление о том, как живые клетки используют ограниченное число генов для образования таких невероятно сложных органов, как мозг» . Сам журнал Nature начинается со статьи Хейди Ледфорда «Код внутри кода». Затем последовала статья Техедора и Валькарсела под названием «Регуляция генов: взлом второго генетического кода. И, наконец, решающей стала статья группы исследователей из университета Торонто под руководством Бенджамина Д. Бленкоу и Брендона Д. Фрея, «Расшифровывая код сплайсинга».

Эта статья – победа информационной науки, которая напоминает нам дешифровальщиков времен Второй Мировой Войны. Их методы включали алгебру, геометрию, теорию вероятностей, векторное исчисление, теорию информации, оптимизацию кода программы, и другие передовые методы. В чем они не нуждались, так это в эволюционной теории , которая никогда не упоминалась в научных статьях. Читая эту статью, можно увидеть, под каким сильным напряжением находятся авторы этой увертюры:

«Мы описываем схему ‘кода сплайсинга’, в которой используются комбинации сотен свойств РНК для того, чтобы предсказать обусловленные тканями изменения в альтернативном сплайсинге тысячи экзонов. Код устанавливает новые классы схем сплайсинга, распознает разные регулирующие программы в разных тканях и устанавливает контролируемые мутациями регулирующие последовательности. Мы раскрыли широко распространенные регулирующие стратегии, включая: использование непредвиденно крупных объединений свойств; выявление низких уровней включения экзона, которые ослабляются свойствами специфических тканей; проявление свойств в интронах глубже, чем считалось раньше; и модуляция уровней сплайс-варианта структурными характеристиками транскрипта. Код помог установить класс экзонов, включение которых заглушает экспрессию в тканях взрослого организма, активируя деградацию мРНКа, и исключение которых способствует экспрессии во время эмбриогенеза. Код облегчает раскрытие и детальное описание регулируемых событий альтернативного сплайсинга в масштабах всего генома».

В команде, взломавшей код, участвовали специалисты с кафедры электронной и вычислительной техники, а также с кафедры молекулярной генетики. (Сам же Фрей работает в подразделении корпорации Microsoft, Microsoft Research) Подобно дешифровальщикам прошлого времени, Фрей и Бараш разработали «новый метод биологического анализа, проводимого с помощью компьютера, который обнаруживает ‘кодовые слова’, запрятанные внутри генома» . С помощью огромного количества данных, созданных молекулярными генетиками, группа исследователей проводила «обратную разработку» кода сплайсинга до тех пор, пока они не смогли предсказать, как он будет действовать . Как только исследователи с этим справились, они проверили этот код на мутациях и увидели, как вставляются или удаляются экзоны. Они обнаружили, что код даже может вызывать тканеспецифические изменения или действовать по-разному в зависимости от того, взрослая это мышь или эмбрион. Один ген, Xpo4, связан с раком; исследователи отметили: «Эти данные подтверждают вывод о том, что экспрессия Xpo4 гена должна строго контролироваться во избежание возможных губительных последствий, включая онкогенез (рак), так как он активен во время эмбриогенеза, но его количество снижено в тканях взрослого организма. Оказывается, что они были абсолютно удивлены уровнем контроля, который они увидели. Намеренно или нет, но в качестве ключа к разгадке Фрей использовал не случайную изменчивость и отбор, а язык разумного замысла. Он отметил: «Понимание сложной биологической системы подобно пониманию сложной электронной схемы».

Хейди Ледфорд сказал, что кажущаяся простота генетического кода Уотсона-Крика, с его четырьмя основаниями, триплетными кодонами, 20 аминокислотами и 64 «символами» ДНК – скрывает под собой целый мир сложности . Заключенный внутри этого более простого кода, Код сплайсинга намного сложнее.

Но между ДНК и белками находится РНК – отдельный мир сложности. РНК – это трансформер, который иногда переносит генетические послания, а иногда управляет ими, задействуя при этом множество структур, способных влиять на его функцию. В статье, опубликованной в этом же выпуске, группа исследователей под руководством Бенджамина Д. Бленкоу и Брендона Д. Фрея из университета Торонто в Онтарио, Канада, сообщает о попытках разгадать второй генетический код, который может предсказывать, как сегменты информационной РНК, транскрибированные с определенного гена, могут смешиваться и сочетаться, чтобы образовывать разнообразные продукты в разных тканях. Это процесс известен как альтернативный сплайсинг. На этот раз нет никакой простой таблицы – вместо неё алгоритмы, которые объединяют более чем 200 различных свойств ДНК с определениями структуры РНК.

Работа этих исследователей указывает на быстрый прогресс, которого достигли вычислительные методы в составлении модели РНК. В дополнение к пониманию альтернативного сплайсинга, информатика помогает ученым предсказывать структуры РНК и устанавливать маленькие регулирующие фрагменты РНК, которые не кодируют протеины. «Это замечательное время» , - говорит Кристофер Берг, компьютерный биолог из массачусетского института технологий в Кембридже. «В будущем нас ждёт огромный успех» .

Информатика, компьютерная биология, алгоритмы и коды – эти концепции не были частью дарвиновского словаря, когда он разрабатывал свою теорию. У Менделя была очень упрощенная модель того, как распределяются признаки во время унаследования. К тому же, идея о том, что признаки кодируются, была представлена только в 1953 году. Мы видим, что исходный генетический код регулируется еще более сложным, включенным в него, кодом. Это революционные идеи . К тому же есть все признаки того, что этот уровень контроля не последний . Ледфорд напоминает нам, что например, РНК и белки имеют трехмерную структуру. Функции молекул могут изменяться, когда изменяется их форма Должно существовать что-то, что контролирует складывание, так что трехмерная структура выполняет то, что требует функция. К тому же, доступ к генам, по-видимому, контролируется другим кодом, гистоновым кодом . Этот код закодирован молекулярными маркерами или «хвостами» на гистоновых белках, которые служат центрами для скручивания и суперскручивания ДНК. Описывая наше время, Ледфорд говорит о «постоянном возрождении в информатике РНК» .

Техедор и Валькарсел согласны с тем, что за простотой кроется сложность. «По идее все выглядит очень просто: ДНК образует РНК, которая затем создает белок» , - начинают они свою статью. «Но в реальности всё намного сложнее» . В 1950-х годах мы узнали о том, что все живые организмы, от бактерий до человека, имеют основной генетический код. Но вскоре мы поняли, что сложные организмы (эукариоты) обладают каким-то неестественным и трудным для понимания свойством: их геномы имеют своеобразные участки, интроны, которые должны удаляться, чтобы экзоны могли соединиться вместе. Почему? Сегодня туман рассеивается: «Основное преимущество этого механизма заключается в том, что он позволяет разным клеткам выбирать альтернативные способы сплайсинга предшественника матричной РНК (пре-мРНК) и таким образом один ген образует различные послания», - объясняют они, - «а затем различные мРНК могут кодировать разные белки с различными функциями» . Из меньшего кода вы получаете больше информации, при условии, что внутри кода есть этот другой код, который знает, как это сделать.

Что и делает взлом кода сплайсинга настолько трудным, так это то, что факторы, контролирующие сборку экзонов, устанавливаются множеством других факторов: последовательностями, расположенными рядом с границами экзона, последовательностями интронов и регулирующими факторами, которые либо помогают, либо тормозят механизм сплайсинга. К тому же, «воздействия определенной последовательности или фактора могут изменяться в зависимости от её расположения относительно границ интрона-экзона или других регуляторных мотивов» , - поясняют Техедор и Валькарсел. «Поэтому самой сложной задачей в предсказании тканеспецифического сплайсинга является вычисление алгебры несметного числа мотивов и взаимоотношений между регуляторными факторами, которые их распознают» .

Для разрешения этой проблемы группа исследователей ввела в компьютер огромное количество данных о последовательностях РНК и условиях, в которых они образовались. «Затем компьютеру было дано задание - определить комбинацию свойств, которые лучше всего могли бы объяснить экспериментально установленный тканеспецифический отбор экзонов» . Другими словами, исследователи провели обратную разработку кода. Подобно дешифровальщикам времен Второй Мировой Войны, как только ученые узнают алгоритм, они могут делать предсказания: «Он правильно и с точностью установил альтернативные экзоны и предсказал их дифференциальное регулирование между парами типов тканей». И так же как любая хорошая научная теория, открытие дало новое понимание: «Это позволило нам по-новому объяснить ранее установленные регуляторные мотивы и указало на ранее неизвестные свойства известных регуляторов, а также неожиданные функциональные связи между ними» , - отметили исследователи. «Например, код подразумевает, что включение экзонов, ведущее к процессированным белкам, является общим механизмом управления процессом экспрессии генов во время перехода из эмбриональной ткани в ткань взрослого организма» .

Техедор и Валькарсел считают публикацию их статьи важным первым шагом: «Работу... лучше рассматривать как открытие первого фрагмента гораздо более крупного Розеттского камня, необходимого для расшифровки альтернативных сообщений нашего генома». По словам этих ученых, будущие исследования, несомненно, улучшат их знания об этом новом коде. В заключение своей статьи они вскользь упоминают эволюцию, и делают это очень необычным образом. Они говорят: «Это не значит, что эволюция создала эти коды. Это означает, что прогресс будет требовать понимания того, как коды взаимодействуют. Другой неожиданностью стало то, что наблюдаемая на сегодня степень сохранения поднимает вопрос о возможном существовании «видоспецифичных кодов» .

Код, вероятно, работает в каждой отдельной клетке и, поэтому, возможно должен отвечать более чем за 200 типов клеток млекопитающих животных. Также он должен справляться с огромным разнообразием схем альтернативного сплайсинга, не говоря уже о простых решениях о включении или пропуске отдельного экзона. Ограниченное эволюционное сохранение регулирования альтернативного сплайсинга (который по подсчетам составляет около 20% между людьми и мышами) поднимает вопрос о существовании видоспецифичных кодов. Более того, связь между процессингом ДНК и транскрипцией генов влияет на альтернативный сплайсинг, и последние данные указывают на упаковку ДНК гистоновыми белками и ковалентными модификациями гистонов (так называемый эпигенетический код) в регуляции сплайсинга. Поэтому будущим методам предстоит установить точное взаимодействие между гистоновым кодом и кодом сплайсинга. То же самое касается еще мало понимаемого влияния сложных структур РНК на альтернативный сплайсинг.

Коды, коды и снова коды. То, что ученые практически ничего не говорят о дарвинизме в этих статьях, указывает на то, что эволюционным теоретикам – приверженцам старых идей и традиций, предстоит много над чем поразмышлять после того, как они прочтут эти статьи. А вот те, кто с восторженностью относится к биологии кодов, окажутся на передовой. У них есть замечательная возможность воспользоваться увлекательным веб-приложением, которое дешифровщики создали для того, чтобы стимулировать проведение дальнейшего исследования. Его можно найти на сайте университета Торонто под названием «Веб-сайт прогнозирования альтернативного сплайсинга». Посетители напрасно будут искать здесь упоминания об эволюции, и это несмотря на старую аксиому, что ничего в биологии не имеет без неё смысла. Новая версия этого выражения 2010 года может звучать так: «Ничто в биологии не имеет смысла, если не рассматривается в свете информатики» .

Ссылки и примечания

Мы рады, что смогли рассказать вам об этой истории в день её публикации. Возможно, это одна из наиболее значимых научных статей года. (Конечно же, значимым является каждое большое открытие, сделанное другими группами ученых, как открытие Уотсона и Крика.) Единственное, что мы можем сказать на это: «Вот это да!» Это открытие – замечательное подтверждение Сотворения по замыслу и огромный вызов дарвиновской империи. Интересно, как эволюционисты попытаются исправить свою упрощенную историю случайных мутаций и естественного отбора, которая была придумана еще в 19 столетии, в свете этих новых данных.

Вы поняли, о чем говорят Техедор и Валькарсел? Виды могут иметь свой собственный код, свойственный только этим видам. «Поэтому будущим методам предстоит установить точное взаимодействие между гистоновым [эпигенетическим] кодом и кодом сплайсинга», - отмечают они. В переводе это означает: «Дарвинисты здесь не причем. Они просто не способны с этим справиться». Если простой генетический код Уотсона-Крика был проблемой для дарвинистов, то, что они скажут теперь о коде сплайсинга, который из одних и тех же генов создает тысячи транскриптов? А как они справятся с эпигенетическим кодом, который управляет экспрессией генов? И кто знает, может в этом невероятном «взаимодействии», о котором мы только начинаем узнавать, задействованы и другие коды, напоминающие Розеттский камень, только начинающий показываться из песка?

Теперь, когда мы размышляем о кодах и информатике, мы начинаем думать о разных парадигмах нового исследования. Что если геном частично действует как сеть хранения данных? Что если в нем имеет место криптография или происходят алгоритмы сжатия? Нам следует вспомнить о современных информационных системах и технологиях хранения информации. Может быть, мы даже обнаружим элементы стеганографии. Несомненно, существуют дополнительные механизмы устойчивости, такие как дублирования и исправления, которые возможно помогут объяснить существование псевдогенов. Копирования всего генома могут быть реакциями на стресс. Некоторые из этих явлений могут оказаться полезными показателями исторических событий, которые не имеют ничего общего с универсальным общим предком, но помогают исследовать сравнительную геномику в рамках информатики и дизайна устойчивости, а также помогают понять причину заболевания.

Эволюционисты оказываются в сильном затруднении. Исследователи попытались видоизменить код, а получили только рак и мутации. Как они собираются пройти по полю приспособленности, если оно всё заминировано катастрофами, ждущими своего часа, как только кто-то начинает вмешиваться в эти неразрывно связанные коды? Мы знаем, что существует некая встроенная устойчивость и переносимость, но вся картина представляет собой невероятно сложную, разработанную, оптимизированную информационную систему , а не беспорядочное соединение частей, которыми можно бесконечно играться. Вся идея кода является концепцией разумного замысла.

A. E. Уайлдер-Смит придавал этому особое значение. Код предполагает соглашение между двумя частями. Соглашение – это заблаговременное согласие. Оно подразумевает планирование и цель. Символ SOS, как сказал бы Уайлдер-Смит, мы используем по соглашению как сигнал бедствия. SOS не выглядит как бедствие. Оно не пахнет как бедствие. Оно не ощущается как бедствие. Люди не понимали бы, что эти буквы обозначают бедствие, если бы они не понимали суть самого соглашения. Подобным образом, кодон аланина, ГЦЦ, не выглядит, не пахнет и не ощущается как аланин. Кодон не имел бы никакого отношения к аланину, если бы между двумя кодирующими системами (кодом белка и кодом ДНК) не было заранее установленного соглашения о том, что «ГЦЦ должен означать аланин». Для передачи этого соглашения используется семейство преобразователей, аминоацил-тРНК-синтетаз, которые переводят один код в другой.

Это должно было укрепить теорию замысла в 1950-х годах и многие креационисты эффективно её проповедовали. Но эволюционисты похожи на красноречивых торговцев. Они сочинили свои сказки о фее Динь-Динь, которая разбирает код и создает новые виды путем мутации и отбора, и убедили многих людей в том, что чудеса могут происходить и сегодня. Ну, хорошо, сегодня за окном 21-й век и нам известен эпигенетический код и код сплайсинга – два кода, которые намного сложнее и динамичнее, чем простой код ДНК. Мы знаем о кодах внутри кодов, о кодах над кодами и под кодами – нам известна целая иерархия кодов. На этот раз эволюционисты не могут просто вставить палец в пистолет и с блефом убеждать нас своими красивыми речами, когда по обеим сторонам расставлены пушки – целый арсенал, направленный на их главные элементы конструкции. Всё это игра. Вокруг них выросла целая эра информатики, они давно вышли из моды и похожи на Греков, которые пытаются с копьями лезть на современные танки и вертолеты.

Грустно признавать, но эволюционисты не понимают этого, или даже если и понимают, то не собираются сдаваться. Между прочим, на этой неделе, как раз когда была опубликована статья о Коде сплайсинга, со страниц продарвиновских журналов и газет посыпалась наиболее злая и ненавистная за последнее время риторика, направленная против креационизма и разумного замысда. Нам предстоит услышать еще о многих подобных примерах. И пока они держат в своих руках микрофоны и контролируют институты, многие люди будут попадаться на их удочку, думая, что наука продолжает давать им достаточное основание. Мы рассказываем вам всё это для того, чтобы вы читали этот материал, изучали его, понимали и запаслись информацией, которая вам необходима для того, чтобы сразить истиной этот фанатичный, вводящий в заблуждение вздор. А теперь, вперёд!

К серии статей, описывающих происхождение ГК, можно относиться как к расследованию событий, о которых у нас осталось очень немало следов. Однако для понимания этих статей необходимо немного приложить усилий для вникания в молекулярные механизмы синтеза белка. Данная статья является вступительной для серии автопубликаций, посвященных возникновению генетического кода, и с неё лучше всего начинать знакомство с этой темой.
Обычно генетический код (ГК) определяют как способ (правило) кодирования белка на первичной структуре ДНК или РНК. В литературе чаще всего пишут, что это - однозначное соответствие последовательности из трёх нуклеотидов в гене одной аминокислоте в синтезируемом белке или месту окончания синтеза белка. Однако в таком определении есть две ошибки. При этом подразумеваются 20, так называемых канонических аминокислот, которые входят в состав белков всех без исключения живых организмов. Эти аминокислоты являются мономерами белка. Ошибки следующие:

1) Канонических аминокислот не 20, а только 19. Аминокислотой мы можем называть вещество, которое одновременно содержит аминогруппу -NH 2 и карбоксильную группу - COOH. Дело в том, что мономер белка - пролин - аминокислотой не является, поскольку в нём вместо аминогруппы присутствует иминогруппа, поэтому пролин правильней называть иминокислотой. Однако в дальнейшем во всех статьях, посвящённых ГК, для удобства я буду писать о 20 аминокислотах, подразумевая указанный ньюанс. Структуры аминокислоты приведены на рис. 1.

Рис. 1. Структуры канонических аминокислот. Аминокислоты имеют константные части, обозначенные на рисунке чёрным цветом, и вариабельные (или радикалы), обозначенные красным.

2) Соответствие аминокислот кодонам не всегда является однозначным. О нарушении случаев однозначности см. ниже.

Возникновение ГК означает возникновение кодируемого синтеза белка. Это событие является одним из ключевых для эволюционного формирования первых живых организмов.

Структура ГК представлена в круговой форме на рис. 2.



Рис. 2. Генетический код в круговой форме. Внутренний круг - первая буква кодона, второй круг - вторая буква кодона, третий круг - третья буква кодона, четвертый круг - обозначения аминокислот в трехбуквенном сокращении; П - полярные аминокислоты, НП - неполярные аминокислоты. Для наглядности симметрии важен избранный порядок символов U - C - A - G .

Итак, приступим к описанию основных свойств ГК.

1. Триплетность. Каждая аминокислота кодируется последовательностью из трёх нуклеотидов.

2. Наличие межгенных знаков препинания. К межгенным знакам препинания относятся последовательности нуклеиновой кислоты, на которых трансляци я начинается или заканчивается.

Трансляци я может начаться не с любого кодона, а только со строго определённого - стартового . К стартовому кодону относится триплет AUG , с которого начинается трансляци я. В этом случае этот триплет кодирует или метионин, или другую аминокислоту - формилметионин (у прокариот), который может включаться только в начале синтеза белка. В конце каждого гена, кодирующего полипептид, находится, по меньшей мере, один из 3-х терминирующих кодонов , или стоп-сигналов : UAA, UAG, UGA. Они терминируют трансляци ю (так называется синтез белка на рибосоме).

3. Компактность, или отсутствие внутригенных знаков препинания. Внутри гена каждый нуклеотид входит в состав значащего кодона.

4. Неперекрываемость. Кодоны не перекрываются друг с другом, каждый имеет своё упорядочённое множестов нуклеотидов, которое не перекрывается с аналогичными множествами соседних кодонов.

5. Вырожденность. Обратное соответствие в направлении аминокислота-кодон неоднозначно. Это свойство называется вырожденностью. Серия - это множество кодонов, кодирующих одну аминокислоту, другими словами, это группа эквивалентных кодонов . Представим себе кодон в виде XYZ. Если XY определяет “смысл ” (т.е. аминокислоту), то кодон называется сильным . Если же для определения смысл а кодона нужен определенный Z, то такой кодон называется слабым .

Вырожденность кода тесно связана с неоднозначностью спаривания кодон-антикодон (под антикодоном подразумевается последовательность из трёх нуклеотидов на тРНК , которая может комплементарно спариваться с кодоном на матричной РНК (см. более подробно об этом две статьи: Молекулярные механизмы обеспечения вырожденности кода и Правило Лагерквиста. Физико-химическое обоснование симметрий и соотношений Румера ). Один антикодон на тРНК может узнавать отодного до трёх кодонов на мРНК.

6. Однозначность. Каждый триплет кодирует лишь одну аминокислоту или является терминатором трансляци и.

Известно три исключения.

Первое. У прокариот в первой позиции (заглавная буква) он кодирует формилметионин, а в любой другой - метионин.В начале гена формилметионин кодируется как обычным метиониновым кодоном AUG , так и ещё валиновым кодоном GUG или лейциновым UUG , которые внутри гена кодируют валин и лейцин, соответственно.

Во многих белках формилметионин отщепляется, либо удаляется формильная группа, в результате чего формилметионин превращается в обычный метионин.

Второе. В 1986 году сразу несколько групп исследователей обнаружили, что на мРНК терминирующий кодон UGA может кодировать селеноцистеин (см. рис. 3) при условии, что за ним следует особая последовательность нуклеотидов.

Рис. 3. Структура 21-й аминокислоты - селеноцистеина.

У E. coli (это латинское название кишечной палочки) селеноцистеил-тРНК в процессе трансляци и распознает в мРНК кодон UGA, но лишь в определенном контекст е: для узнавания UGA-кодона как осмысл енного важна последовательность длиной в 45 нуклеотидов, расположенная вслед за UGA-кодоном.

Рассмотренный пример показывает, что при необходимости живой организм может изменять смысл стандартного генетического кода. В этом случае генетическая информация, заключенная в генах, кодируется более сложным образом. Смысл кодона определяется в контекст е с определенной протяженной последовательностью нуклеотидов и при участии нескольких высокоспецифических белковых факторов. Важно, что селеноцистеиновая тРНК обнаружена в представителях всех трёх ветвей жизни (архей, эубактерий и эукариот), что указывает на древность происхождения селеноцистеинового синтеза, и возможно на присутствие его ещё в последнем универсальном общем предке (о нём речь пойдёт в других статьях). Скорей всего селеноцистеин встречается у всех без исключения живых организмов. Но в каждом отдельном организме селеноцистеин встречается не более, чем в паред есятков белков. Он входит в состав активных центров ферментов, в ряде гомологов которых на аналогичной позиции может функционировать обычный цистеин.

До недавнего времени считалось, что кодон UGA может считываться либо как селеноцистеин, либо кактерминальный, но недавно было показано, что у инфузории Euplotes кодон UGA кодирует или цистеин, илиселеноцистеин. См. " Генетический код допускает разночтения "

Третье исключение. У некоторых прокариот (5 видов архей и одной эубактерии - в Википедии информация сильно устарела) встречается особая кислота - пирролизин (рис. 4). Она кодируется триплетом UAG , который в каноническом коде служит терминатором трансляци и. Предполагается, что в этом случае, подобно случаю с кодированием селеноцистеина, считывание UAG как пирролизинового кодона происходит благодаря особой структуре на мРНК. Пирролизиновая тРНК содержит антикодон CTA и аминоацилируется АРСаз ой 2-го класса (про классификацию АРСаз см. статью "Кодазы помогают понять, как возник генетический код ").

UAG в качестве стоп-кодона используется редко, а если и используется, то часто за ним следует другой стоп-кодон.

Рис. 4. Структура 22-й аминокислоты пирролизина.

7. Универсальность. После того, как в середине 60-х годов прошлого века расшифровка ГК была завершена, долгое время считалось, что код одинаков во всех организмах, что указывает на единство происхождения всего живого на Земле.

Попробуем понять, почему ГК универсален. Дело в том, что если бы в организме изменилось хотя бы одно правило кодирования, то это привело бы к тому, что изменилась структура значительной части белков. Такое изменение было бы слишком кардинальным и поэтому практически всегда летальное, так как изменение смысл а только одного кодона может затронуть в среднем 1/64 часть всех аминокислотных последовательностей.

Отсюда следует одна очень важная мысль - ГК почти не менялся со времени своего формирования более 3,5 млрд. лет назад. А, значит, его структура несёт в себе след его возникновения, и анализ этой структуры может помочь понять, как именно мог возникнуть ГК.

В действительности ГК может несколько отличаться у бактерий, митохондрий, ядерный код некоторых инфузорий и дрожжей. Cейчас насчитывают не менее 17 генетических кодов, отличающихся от канонического на 1-5 кодонов Суммарно во всех известных вариантах отклонений от универсального ГК используются 18 различных замен смысл а кодона. Больше всего отклонений от стандартного кода известно у митохондрий - 10. Примечательно, что митохондрии позвоночных, плоских червей, иглокожих, кодируются разными кодами, а плесневых грибков, простейших и кишечнополостных - одним.

Эволюционная близость видов - отнюдь не гарант того, чтобы у них были сходные ГК. Генетические коды могут различаться даже у разных видов микоплазм (одни виды имеют канонический код, а другие - отличающиеся). Аналогичная ситуация наблюдается и для дрожжей.

Важно отметить, что митохондрии - потомки симбиотических организмов, которые приспособились жить внутри клеток. Они имеют сильно редуцированный геном , часть генов переселилась в ядро клетки. Поэтому изменения ГК в них становятся уже не столь кардинальными.

Обнаруженные позднее исключения представляют особый интерес с точки зрения эволюции, поскольку могу помочь пролить свет на механизмы эволюции кода.

Таблица 1.

Митохондриальные коды у различных организмов.

Кодон

Универсальный код

Митохондриальные коды

Позвоночные

Беспозвоночные

Дрожжи

Растения

UGA

STOP

Trp

Trp

Trp

STOP

AUA

Ile

Met

Met

Met

Ile

CUA

Leu

Leu

Leu

Thr

Leu

AGA

Arg

STOP

Ser

Arg

Arg

AGG

Arg

STOP

Ser

Arg

Arg

Три механизма смены аминокислоты, кодируемой кодом.

Первый - когда какой-то кодон не используется (или почти не используется) каким-то организмом в силу неравномерности встречаемости каких-то нуклеотидов (GC -состав), или комбинаций нуклеотидов. В результате такой кодон может вовсе исчезнуть из употребления (например, благодаря потере соответствующей тРНК ), а в дальнейшем может использоваться для кодирования другой аминокислоты без нанесения существенного ущерба организму. Этот механизм возможно отвечает за появление некоторых диалектов кодов у митохондрий.

Второй - превращение стоп-кодона в смысл овой. В этом случае часть у части транслируемых белков могут появиться дополнения. Однако ситуацию частично спасает то, что многие гены часто заканчиваются не одним, а двумя стоп-кодонами, поскольку возможны ошибки трансляци и, при которых стоп-кодоны считываются как аминокислоты.

Третий - возможно неоднозначное считывание определённых кодонов, как это имееют место у некоторых грибов.

8 . Связность. Группы эквивалентных кодонов (то есть кодонов, кодирующих одну и ту же аминокислоту) называются сериями . ГК содержит 21 серию, включая стоп-кодоны. В дальнейшем для определенности любая группа кодонов будет называться связной, если от каждого кодона этой группы можно перейти ко всем другим кодонам этой же группы путем последовательных замен нуклеотидов. Из 21 серии связны 18. 2 серии содержат по одному кодону, и лишь 1 серия для аминокислоты серин является несвязной и распадается на 2 две связные подсерии.


Рис. 5. Графы связности для некоторых кодовых серий. а - связная серия валина; б - связная серия лейцина; серия серина несвязная, распадается на две связных подсерии. Рисунок взят из статьи В.А. Ратнера " Генетический код как система ".

Свойство связности можно объяснить тем, что в период формирования ГК захватывал новые кодоны, которые минимально отличались от уже используемых.

9. Регулярность свойств аминокислот по корням триплетов. Все аминокислоты, кодируемые триплетами скорнем U, являются неполярными, не крайних свойств и размеров, имеюталифатические радикалы. Все триплеты с корнем C имеют сильные основы, ааминокислоты, кодируемые ими, имеют относительно малые размеры. Все триплеты с корнем A имеют слабые основы, кодируют полярные аминокислоты не малых размеров. Кодоны с корнем G характеризуются крайними и аномальнными вариантами аминокислот и серий. Они кодируют самую маленькую аминокислоту (глицин), самую длинную и плоскую (триптофан), самую длинную и «корявую» (аргинин), самую реактивную (цистеин), образует аномальную подсерию для серина.

10. Блочность. Универсальный ГК является «блоковым» кодом. Это означает, что аминокислоты со сходными физико-химическими свойствами, кодируются кодонами, отличающимися друг от друга одним основанием. Блочность кода хорошо видна на следующем рисунке.


Рис. 6. Блочная структура ГК. Белым цветом обозначены аминокислоты с алкильной группой.


Рис. 7. Цветовое представление физико-химических свойств аминокислот, основанное на значениях, описанных в кн книге Стайерса "Биохимия" . Слева - гидрофобность. Справа - способность к формированию альфа-спирали в белке. Красный, жёлтый и голубой цвета обозначают аминокислоты с большой, средней и малой гидрофобностью (слева) или соответствующей степенью способности к формированию альфа-спирали (справа).

Свойство блочности и регулярности также можно объяснить тем, что в период формирования ГК захватывал новые кодоны, которые минимально отличались от уже используемых.

Кодоны с одинаковыми первыми основаниями (приставками кодонов) кодируют аминокислоты с близкими путями биосинтеза . Кодоны аминокислот, принадлежащих к шикиматному , пируватному , аспартатному и глутаматному семействам, имеют в качестве приставок U, G, A и C, соответственно. О путях древнего биосинтеза аминокислот и его связи со свойствами современного кода см. "Древний дублетный генетический код был предопределён путями синтеза аминокислот ". На основе этих данных некоторые исследователи делают вывод о том, что на формирование кода большое влияние оказали биосинтетические взаимоотношения между аминокислотами . Однако сходство биосинтетических путей вовсе не означает сходство физико-химических свойств .

11. Помехоустойчивость. В самом общем виде помехоустойчивость ГК означает, что при случайных точковых мутациях и ошибках трансляци и не очень сильно меняются физико-химические свойства аминокислот.

Замена одного нуклеотида в триплете в большинстве случаев или не приводит к замене кодируемой аминокислоты, или приводит к замене на аминокислоту с той же полярностью.

Один из механизмов, обеспечивающих помехоустойчивость ГК - его вырожденность. Средняя вырожденность равна - число кодируемых сигналов/общее число кодонов, где к кодируемым сигналам относятся 20 аминокислот и знак терминации трансляци и. Усредненная вырожденность для всех аминокислот и знака терминации составляет три кодона на кодируемый сигнал.

Для того, чтобы количественно оценить помехоустойчивость, введём два понятия. Мутации замен нуклеотидов, не приводящие к смене класса кодируемой аминокислоты, называют консервативными. Мутации замен нуклеотидов, приводящие к смене класса кодируемой аминокислоты, называют радикальными .

Каждый триплет допускает 9 однократных замен. Всего кодирующих аминокислоты триплетов 61. Поэтому количество возможных замен нуклеотидов для всех кодонов -

61 x 9 = 549. Из них:

23 замены нуклеотидов приводят к появлению стоп-кодонов.

134 замены не меняют кодируемую аминокислоту.
230 замен не меняют класс кодируемой аминокислоты.
162 замены приводят к смене класса аминокислоты, т.е. являются радикальными.
Из 183 замен 3-его нуклеотида, 7 приводят к появлению терминаторов трансляци и, а 176 - консервативны.
Из 183 замен 1-ого нуклеотида, 9 приводят к появлению терминаторов, 114 - консервативны и 60 - радикальны.
Из 183 замен 2-го нуклеотида, 7 приводят к появлению терминаторов, 74 -консервативны, 102 - радикальны.

На основе этих расчётов получим количественную оценку помехоустойчивости кода, как отношение числа консервативных замен к числу радикальных замен. Оно равно 364/162=2.25

При реальной оценке вклада вырожденности в помехоустойчивость необходимо учитывать частоту встречаемости аминокислот в белках, которая варьирует в разных видах.

В чем причина помехоустойчивости кода? Большинство исследователей считают, что это свойство является следствием селекции альтернативных ГК .

Стивен Фриленд и Лоренс Херст генерировали случайные такие коды и выясняли, что только один из ста альтернативных кодов обладает не меньшей помехоустойчивостью по сравнению с универсальным ГК.
Еще более интересный факт обнаружился, когда эти исследователи ввели дополнительное ограничение, с тем чтобы учесть реально существующие тенденции в характере мутирования ДНК и появлении ошибок при трансляци и. При таких условиях лучше канонического кода оказался ТОЛЬКО ОДИН КОД ИЗ МИЛЛИОНА ВОЗМОЖНЫХ.
Столь беспрецедентную жизнестойкость генетического кода проще всего объяснить тем, что он сформировался в результате естественного отбора. Возможно когда-то в биологическом мире существовало множество кодов, каждый со своей чувствительностью к ошибкам. Организм, лучше справлявшийся с ними, имел больше шансов выжить, и канонический код просто победил в борьбе за существование. Это предположение кажется вполне реальным - ведь мы знаем, что альтернативные коды действительно существуют. Подробнее о помехоустойчивости см. Закодированная эволюция (С.Фриленд, Л. Херст "Закодированная эволюция".//В мире науки. - 2004, №7).

В заключение, предлагаю посчитать число возможных генетических кодов, которые можно сгенерировать для 20 канонических аминокислот. Почему-то это число нигде мне не попадалось. Итак, нам необходимо, чтобы в генерируемых ГК были обязательно 20 аминокислот и стоп-сигнал, кодируемые ХОТЯ БЫ ОДНИМ КОДОНОМ.

Мысленно будем нумеровать кодоны в каком-то порядке. Рассуждать будем следующим образом. Если у нас имеется ровно 21 кодон, то тогда каждая аминокислота и стоп-сигнал будут занимать ровно по одному кодону. В этом случае возможных ГК будет 21!

Если будет 22 кодона, то появляется лишний кодон, который может иметь один из любых 21 смысл ов, причём этот кодон может располагаться на любом из 22 мест, тогда как остальные кодоны имеют ровно по одному разному смысл у, как и для случая 21 кодонов. Тогда получим число комбинаций 21!х(21х22).

Если кодонов будет 23, то рассуждая аналогично, получим, что 21 кодон имеют ровно по одному разных смысл ов (21! вариантов), а два кодона - по 21 разных смысл а (21 2 смысл ов при ФИКСИРОВАННОМ положении этих кодонов). Число различных положений для этих двух кодонов будет 23х22. Общее число вариантов ГК для 23 кодонов - 21!х21 2 х23х22

Если кодонов будет 24 - то число ГК будет равно 21!х21 3 х24х23х22,...

....................................................................................................................

Если кодонов будет 64, то число возможных ГК будет 21!х21 43 х64!/21! = 21 43 х64! ~ 9.1х10 145

Сегодня ни для кого не секрет, что программа жизнедеятельности всех живых организмов записана на молекуле ДНК. Проще всего представить молекулу ДНК в виде длинной лестницы. Вертикальные стойки этой лестницы состоят из молекул сахара, кислорода и фосфора. Вся важная рабочая информация в молекуле записана на перекладинах лестницы — они состоят из двух молекул, каждая из которых крепится к одной из вертикальных стоек. Эти молекулы — азотистые основания — называются аденин, гуанин, тимин и цитозин, но обычно их обозначают просто буквами А, Г, Т и Ц. Форма этих молекул позволяет им образовывать связи — законченные ступеньки — лишь определенного типа. Это связи между основаниями А и Т и между основаниями Г и Ц (образованную таким образом пару называют «парой оснований» ). Других типов связи в молекуле ДНК быть не может.

Спускаясь по ступенькам вдоль одной цепи молекулы ДНК, вы получите последовательность оснований. Именно это сообщение в виде последовательности оснований и определяет поток химических реакций в клетке и, следовательно, особенности организма, обладающего данной ДНК. Согласно центральной догме молекулярной биологии , на молекуле ДНК закодирована информация о белках , которые, в свою очередь, выступая в роли ферментов (см. Катализаторы и ферменты), регулируют все химические реакции в живых организмах.

Строгое соответствие между последовательностью пар оснований в молекуле ДНК и последовательностью аминокислот, составляющих белковые ферменты, называется генетическим кодом. Генетический код был расшифрован вскоре после открытия двуспиральной структуры ДНК. Было известно, что недавно открытая молекула информационной , или матричной РНК (иРНК, или мРНК), несет информацию, записанную на ДНК. Биохимики Маршалл Уоррен Ниренберг (Marshall W. Nirenberg) и Дж. Генрих Маттеи (J. Heinrich Matthaei) из Национального института здравоохранения в городке Бетезда под Вашингтоном, округ Колумбия, поставили первые эксперименты, которые привели к разгадке генетического кода.

Они начали с того, что синтезировали искусственные молекулы иРНК, состоявшие только из повторяющегося азотистого основания урацила (который является аналогом тимина, «Т», и образует связи только с аденином, «А», из молекулы ДНК). Они добавляли эти иРНК в тестовые пробирки со смесью аминокислот, причем в каждой пробирке лишь одна из аминокислот была помечена радиоактивной меткой. Исследователи обнаружили, что искусственно синтезированная ими иРНК инициировала образование белка лишь в одной пробирке, где находилась меченая аминокислота фенилаланин. Так они установили, что последовательность «—У—У—У—» на молекуле иРНК (и, следовательно, эквивалентную ей последовательность «—А—А—А—» на молекуле ДНК) кодирует белок, состоящий только из аминокислоты фенилаланина. Это было первым шагом к расшифровке генетического кода.

Сегодня известно, что три пары оснований молекулы ДНК (такой триплет получил название кодон ) кодируют одну аминокислоту в белке. Выполняя эксперименты, аналогичные описанному выше, генетики в конце концов расшифровали весь генетический код, в котором каждому из 64 возможных кодонов соответствует определенная аминокислота.