Portaal vannitoa renoveerimise kohta. Kasulikud näpunäited

Kümnendlogaritmi pöördfunktsioon. Logaritm

Positiivse arvu b logaritm aluse a (a>0, a ei võrdu 1-ga) on arv c, nii et a c = b: log a b = c ⇔ a c = b (a > 0, a ≠ 1, b > 0)       

Pange tähele, et mittepositiivse arvu logaritm on määratlemata. Lisaks peab olema logaritmi alus positiivne arv, ei võrdu 1-ga. Näiteks kui paneme ruudu -2, saame arvu 4, kuid see ei tähenda, et 4 aluse -2 logaritm on võrdne 2-ga.

Põhilogaritmiline identiteet

a log a b = b (a > 0, a ≠ 1) (2)

On oluline, et selle valemi parema ja vasaku külje definitsiooni ulatus oleks erinev. Vasak pool on määratletud ainult b>0, a>0 ja a ≠ 1 korral. Parem osa on defineeritud mis tahes b jaoks, kuid ei sõltu a-st üldse. Seega võib põhilogaritmilise “identiteedi” rakendamine võrrandite ja võrratuste lahendamisel kaasa tuua OD muutumise.

Logaritmi määratluse kaks ilmset tagajärge

log a a = 1 (a > 0, a ≠ 1) (3)
log a 1 = 0 (a > 0, a ≠ 1) (4)

Tõepoolest, arvu a tõstmisel esimese astmeni saame sama arvu ja nullastmeni tõstes ühe.

Korrutise logaritm ja jagatise logaritm

log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0) (5)

Log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0) (6)

Tahaksin hoiatada koolilapsi nende valemite mõtlematu kasutamise eest logaritmiliste võrrandite ja võrratuste lahendamisel. Kui kasutate neid "vasakult paremale", ODZ kitseneb ja logaritmide summalt või erinevuselt korrutise või jagatise logaritmile liikudes ODZ laieneb.

Tõepoolest, avaldis log a (f (x) g (x)) on defineeritud kahel juhul: kui mõlemad funktsioonid on rangelt positiivsed või kui f (x) ja g (x) on mõlemad väiksemad kui null.

Teisendades selle avaldise summaks log a f (x) + log a g (x), oleme sunnitud piirduma ainult juhtumiga, kui f(x)>0 ja g(x)>0. Esineb ala kitsenemist vastuvõetavad väärtused, ja see on kategooriliselt vastuvõetamatu, kuna see võib viia lahenduste kadumiseni. Sarnane probleem on valemi (6) puhul.

Kraadi saab logaritmi märgist välja võtta

log a b p = p log a b (a > 0, a ≠ 1, b > 0) (7)

Ja taas tahaksin nõuda täpsust. Kaaluge järgmist näidet:

Log a (f (x) 2 = 2 log a f (x)

Võrdsuse vasak pool on ilmselgelt määratletud kõigi f(x) väärtuste jaoks, välja arvatud null. Parem pool on ainult f(x)>0 jaoks! Võttes astme logaritmist välja, kitsendame taas ODZ-d. Vastupidine protseduur viib vastuvõetavate väärtuste vahemiku laiendamiseni. Kõik need märkused kehtivad mitte ainult võimsuse 2, vaid ka mis tahes ühtlase võimsuse kohta.

Valem uuele sihtasutusele kolimiseks

log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1) (8)

See haruldane juhtum, kui ODZ transformatsiooni ajal ei muutu. Kui olete valinud aluse c targalt (positiivne ja mitte 1), on uuele alusele kolimise valem täiesti ohutu.

Kui valime uueks baasiks c arvu b, saame olulise erijuhtum valemid (8):

Log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1) (9)

Mõned lihtsad näited logaritmidega

Näide 1. Arvuta: log2 + log50.
Lahendus. log2 + log50 = log100 = 2. Kasutasime logaritmide summa valemit (5) ja kümnendlogaritmi definitsiooni.


Näide 2. Arvuta: lg125/lg5.
Lahendus. log125/log5 = log 5 125 = 3. Kasutasime uude baasi liikumise valemit (8).

Logaritmidega seotud valemite tabel

a log a b = b (a > 0, a ≠ 1)
log a a = 1 (a > 0, a ≠ 1)
log a 1 = 0 (a > 0, a ≠ 1)
log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b p = p log a b (a > 0, a ≠ 1, b > 0)
log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1)
log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1)

Üks primitiivse taseme algebra elemente on logaritm. Nimi pärineb kreeka keel sõnast "arv" või "võimsus" ja tähendab, mil määral tuleb lõppnumbri leidmiseks baasis olevat arvu tõsta.

Logaritmide tüübid

  • log a b – arvu b logaritm alusele a (a > 0, a ≠ 1, b > 0);
  • log b – kümnendlogaritm (logaritm 10-ni, a = 10);
  • ln b – naturaallogaritm (logaritm alusele e, a = e).

Kuidas logaritme lahendada?

B aluse a logaritm on eksponent, mis nõuab b tõstmist aluseni a. Saadud tulemust hääldatakse järgmiselt: "b logaritm alusele a." Logaritmiülesannete lahendus on see, et peate määratud arvude põhjal määrama arvudes antud astme. Logaritmi määramiseks või lahendamiseks, samuti tähistuse enda teisendamiseks on mõned põhireeglid. Nende abil lahendatakse logaritmilisi võrrandeid, leitakse tuletisi, lahendatakse integraale ja tehakse palju muid tehteid. Põhimõtteliselt on logaritmi enda lahendus selle lihtsustatud tähistus. Allpool on toodud põhivalemid ja omadused:

Iga a ; a > 0; a ≠ 1 ja mis tahes x korral; y > 0.

  • a log a b = b – logaritmiline põhiidentiteet
  • log a 1 = 0
  • loga a = 1
  • log a (x y) = log a x + log a y
  • log a x/ y = log a x – log a y
  • log a 1/x = -log a x
  • log a x p = p log a x
  • log a k x = 1/k log a x, kui k ≠ 0
  • log a x = log a c x c
  • log a x = log b x/ log b a – uude baasi liikumise valem
  • log a x = 1/log x a


Kuidas lahendada logaritme - samm-sammult juhised lahendamiseks

  • Kõigepealt kirjutage üles vajalik võrrand.

Pange tähele: kui baaslogaritm on 10, siis kirjet lühendatakse, mille tulemuseks on kümnendlogaritm. Kui see on väärt naturaalarv e, siis kirjutame selle üles, taandades selle naturaallogaritmile. See tähendab, et kõigi logaritmide tulemuseks on aste, milleni tõstetakse baasarv, et saada arv b.


Otseselt seisneb lahendus selle kraadi arvutamises. Enne avaldise lahendamist logaritmiga tuleb seda reegli järgi lihtsustada ehk siis valemeid kasutades. Peamised identiteedid leiate artiklis veidi tagasi minnes.

Logaritmide liitmine ja lahutamine kahega erinevad numbrid, kuid samade alustega asendada ühe logaritmiga vastavalt arvude b ja c korrutise või jaotusega. Sel juhul saate rakendada teise baasi liikumise valemit (vt ülalt).

Kui kasutate avaldisi logaritmi lihtsustamiseks, tuleb arvestada mõningate piirangutega. Ja see on: logaritmi a alus on ainult positiivne arv, kuid mitte võrdne ühega. Arv b, nagu a, peab olema Üle nulli.

On juhtumeid, kus avaldist lihtsustades ei saa te logaritmi arvuliselt arvutada. Juhtub, et sellisel väljendil pole mõtet, sest paljud astmed on irratsionaalsed arvud. Selle tingimuse korral jätke arvu aste logaritmiks.



Nagu teate, korrutades avaldisi astmetega, nende eksponendid liidetakse alati (a b *a c = a b+c). Selle matemaatilise seaduse tuletas Archimedes ja hiljem, 8. sajandil, lõi matemaatik Virasen täisarvude eksponentide tabeli. Just nemad teenisid logaritmide edasist avastamist. Selle funktsiooni kasutamise näiteid võib leida peaaegu kõikjalt, kus on vaja tülikat korrutamist lihtsa liitmise abil lihtsustada. Kui kulutate selle artikli lugemisele 10 minutit, selgitame teile, mis on logaritmid ja kuidas nendega töötada. Lihtsas ja arusaadavas keeles.

Definitsioon matemaatikas

Logaritm on järgmise kujuga avaldis: log a b=c, st mis tahes mittenegatiivse arvu (st iga positiivse) logaritmi “b” aluse “a” suhtes peetakse astmeks “c”. ”, milleni tuleb baasi „a” tõsta, et lõpuks saada väärtus „b”. Analüüsime logaritmi näidete abil, oletame, et on olemas avaldis log 2 8. Kuidas leida vastus? See on väga lihtne, peate leidma sellise võimsuse, et 2-st kuni vajaliku võimsuseni saate 8. Kui olete oma peas arvutusi teinud, saame arvu 3! Ja see on tõsi, sest 2 astmel 3 annab vastuseks 8.

Logaritmide tüübid

Paljude õpilaste ja üliõpilaste jaoks tundub see teema keeruline ja arusaamatu, kuid tegelikult pole logaritmid nii hirmutavad, peamine on mõista nende üldist tähendust ja meeles pidada nende omadusi ja mõningaid reegleid. Logaritmilisi avaldisi on kolme erinevat tüüpi:

  1. Naturaallogaritm ln a, kus aluseks on Euleri arv (e = 2,7).
  2. Kümnend a, kus alus on 10.
  3. Mis tahes arvu b logaritm aluse a>1 suhtes.

Igaüks neist on lahendatud standardsel viisil, sealhulgas lihtsustamine, taandamine ja sellele järgnev taandamine üheks logaritmiks, kasutades logaritmilisi teoreeme. Logaritmide õigete väärtuste saamiseks peaksite nende lahendamisel meeles pidama nende omadusi ja toimingute jada.

Reeglid ja mõned piirangud

Matemaatikas on mitmeid reegleid-piiranguid, mida aktsepteeritakse aksioomina, st need ei kuulu arutlusele ja on tõde. Näiteks on võimatu jagada numbreid nulliga, samuti on võimatu saada paarisjuurt negatiivsed arvud. Logaritmidel on ka oma reeglid, mida järgides saate hõlpsalt õppida töötama isegi pikkade ja mahukate logaritmiliste avaldistega:

  • Alus "a" peab alati olema suurem kui null ja mitte võrdne 1-ga, vastasel juhul kaotab avaldis oma tähenduse, kuna "1" ja "0" on mis tahes määral alati võrdsed nende väärtustega;
  • kui a > 0, siis a b >0, selgub, et ka “c” peab olema suurem kui null.

Kuidas logaritme lahendada?

Näiteks on antud ülesanne leida vastus võrrandile 10 x = 100. See on väga lihtne, tuleb valida aste, tõstes arvu kümmet, milleni saame 100. See on loomulikult 10 2 = 100.

Nüüd esitame selle avaldise logaritmilisel kujul. Saame logaritmi 10 100 = 2. Logaritmide lahendamisel koonduvad kõik toimingud praktiliselt kokku, et leida aste, milleni on etteantud arvu saamiseks vaja sisestada logaritmi baas.

Tundmatu kraadi väärtuse täpseks määramiseks peate õppima kraaditabeliga töötamist. See näeb välja selline:

Nagu näete, saab mõningaid eksponente intuitiivselt ära arvata, kui teil on tehniline mõistus ja teadmised korrutustabelist. Suuremate väärtuste jaoks vajate aga toitetabelit. Seda saavad kasutada isegi need, kes ei tea keerulistest matemaatilistest teemadest midagi. Vasakpoolne veerg sisaldab numbreid (alus a), ülemine rida numbrid on astme c väärtus, milleni arv a tõstetakse. Ristmikul sisaldavad lahtrid numbriväärtusi, mis on vastuseks (a c = b). Võtame näiteks kõige esimese lahtri numbriga 10 ja paneme selle ruudu ruutu, saame väärtuse 100, mis on näidatud meie kahe lahtri ristumiskohas. Kõik on nii lihtne ja kerge, et isegi kõige tõelisem humanist mõistab!

Võrrandid ja võrratused

Selgub, et teatud tingimustel on eksponendiks logaritm. Seetõttu saab logaritmilise võrdsusena kirjutada mis tahes matemaatilisi arvavaldisi. Näiteks 3 4 =81 saab kirjutada kui 81 baasi 3 logaritm, mis võrdub neljaga (log 3 81 = 4). Sest negatiivsed jõud reeglid on samad: 2 -5 = 1/32 kirjutame selle logaritmina, saame log 2 (1/32) = -5. Matemaatika üks põnevamaid sektsioone on “logaritmide” teema. Allpool vaatleme võrrandite näiteid ja lahendusi, kohe pärast nende omaduste uurimist. Nüüd vaatame, kuidas ebavõrdsused välja näevad ja kuidas neid võrranditest eristada.

Antud on avaldis järgmisel kujul: log 2 (x-1) > 3 - see on logaritmiline ebavõrdsus, kuna tundmatu väärtus "x" on logaritmi märgi all. Ja ka avaldises võrreldakse kahte suurust: soovitud arvu logaritm alus kahele on suurem kui arv kolm.

Kõige olulisem erinevus logaritmiliste võrrandite ja võrratuste vahel on see, et logaritmidega võrrandid (näiteks logaritm 2 x = √9) eeldavad ühte või mitut konkreetset vastust. arvväärtusi, samas kui ebavõrdsuse lahendamisel määratakse nii selle funktsiooni lubatud väärtuste vahemik kui ka murdepunktid. Selle tulemusena ei ole vastus lihtne üksikute arvude kogum, nagu võrrandi vastuses, vaid pidev arvude jada või komplekt.

Põhiteoreemid logaritmide kohta

Primitiivsete logaritmi väärtuste leidmise ülesannete lahendamisel ei pruugi selle omadused olla teada. Kui aga rääkida logaritmilistest võrranditest või võrratustest, siis ennekõike on vaja selgelt mõista ja praktikas rakendada logaritmide kõiki põhiomadusi. Vaatame võrrandite näiteid esmalt üksikasjalikumalt.

  1. Põhiidentiteet näeb välja selline: a logaB =B. See kehtib ainult siis, kui a on suurem kui 0, mitte võrdne ühega ja B on suurem kui null.
  2. Korrutise logaritmi saab esitada järgmise valemiga: log d (s 1 * s 2) = log d s 1 + log d s 2. Sel juhul on kohustuslik tingimus: d, s 1 ja s 2 > 0; a≠1. Saate esitada selle logaritmilise valemi tõestuse koos näidete ja lahendusega. Olgu log a s 1 = f 1 ja log a s 2 = f 2, siis a f1 = s 1, a f2 = s 2. Saame, et s 1 * s 2 = a f1 *a f2 = a f1+f2 (omadused kraadi ) ja siis definitsiooni järgi: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2, mis vajas tõestamist.
  3. Jagatise logaritm näeb välja selline: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. Valemi kujul olev teoreem on järgmisel kujul: log a q b n = n/q log a b.

Seda valemit nimetatakse "logaritmi astme omaduseks". See meenutab tavaliste kraadide omadusi ja see pole üllatav, sest kogu matemaatika põhineb looduslikel postulaatidel. Vaatame tõestust.

Olgu logi a b = t, selgub a t =b. Kui tõstame mõlemad osad astmeni m: a tn = b n ;

aga kuna a tn = (a q) nt/q = b n, siis log a q b n = (n*t)/t, siis log a q b n = n/q log a b. Teoreem on tõestatud.

Näited probleemidest ja ebavõrdsusest

Kõige tavalisemad logaritmide probleemide tüübid on võrrandite ja võrratuste näited. Neid leidub peaaegu kõigis probleemraamatutes ja need on ka matemaatikaeksamite kohustuslik osa. Ülikooli astumiseks või matemaatika sisseastumiseksamite sooritamiseks peate teadma, kuidas selliseid ülesandeid õigesti lahendada.

Kahjuks pole logaritmi tundmatu väärtuse lahendamiseks ja määramiseks ühtset plaani või skeemi, kuid iga matemaatilise võrratuse või logaritmilise võrrandi puhul saab rakendada teatud reegleid. Kõigepealt peaksite välja selgitama, kas väljendit saab lihtsustada või viia selleni üldine välimus. Kui kasutate nende omadusi õigesti, saate pikki logaritmilisi avaldisi lihtsustada. Saame nendega kiiresti tuttavaks.

Logaritmivõrrandite lahendamisel tuleb kindlaks teha, mis tüüpi logaritm meil on: näidisavaldis võib sisaldada naturaallogaritmi või kümnendlogaritmi.

Siin on näited ln100, ln1026. Nende lahendus taandub asjaolule, et nad peavad määrama võimsuse, mille baas 10 võrdub vastavalt 100 ja 1026. Naturaallogaritmide lahendamiseks peate rakendama logaritmilisi identiteete või nende omadusi. Vaatame näiteid erinevat tüüpi logaritmiliste ülesannete lahendamisest.

Logaritmi valemite kasutamine: näidete ja lahendustega

Niisiis, vaatame näiteid logaritmide põhiteoreemide kasutamisest.

  1. Korrutise logaritmi omadust saab kasutada ülesannetes, kus on vaja laiendada suur tähtsus arvud b lihtsamateks teguriteks. Näiteks log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Vastus on 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - nagu näha, õnnestus meil logaritmi astme neljandat omadust kasutades lahendada pealtnäha keeruline ja lahendamatu avaldis. Peate lihtsalt arvutama aluse ja seejärel võtma eksponendi väärtused logaritmi märgist välja.

Ühtse riigieksami ülesanded

Sisseastumiseksamitel leidub sageli logaritme, eriti palju logaritmiülesandeid ühtse riigieksami puhul (riigieksam kõigile koolilõpetajatele). Tavaliselt on need ülesanded olemas mitte ainult A osas (kõige lihtsam test osa eksam), aga ka C-osas (kõige keerulisemad ja mahukamad ülesanded). Eksam eeldab teema “Looduslikud logaritmid” täpset ja täiuslikku tundmist.

Näited ja probleemide lahendused on võetud ametlikult Ühtse riigieksami valikud. Vaatame, kuidas selliseid ülesandeid lahendatakse.

Antud log 2 (2x-1) = 4. Lahendus:
kirjutame avaldise ümber, lihtsustades seda veidi log 2 (2x-1) = 2 2, logaritmi definitsiooniga saame, et 2x-1 = 2 4, seega 2x = 17; x = 8,5.

  • Parim on taandada kõik logaritmid samale alusele, et lahendus ei oleks tülikas ja segane.
  • Kõik logaritmimärgi all olevad avaldised on näidatud positiivsetena, seega kui logaritmimärgi all oleva avaldise astendaja võetakse kordajaks välja, peab logaritmi alla jääv avaldis olema positiivne.

Mis on logaritm?

Tähelepanu!
On täiendavaid
materjalid erijaos 555.
Neile, kes on väga "mitte väga..."
Ja neile, kes "väga…")

Mis on logaritm? Kuidas logaritme lahendada? Need küsimused ajavad paljud koolilõpetajad segadusse. Traditsiooniliselt peetakse logaritmide teemat keeruliseks, arusaamatuks ja hirmutavaks. Eriti logaritmidega võrrandid.

See pole absoluutselt tõsi. Absoluutselt! Ei usu mind? Hästi. Nüüd, vaid 10–20 minuti pärast:

1. Sa saad aru mis on logaritm.

2. Õppige lahendama tervet klassi eksponentsiaalvõrrandeid. Isegi kui te pole neist midagi kuulnud.

3. Õppige arvutama lihtsaid logaritme.

Veelgi enam, selleks peate teadma ainult korrutustabelit ja seda, kuidas tõsta arvu astmeks...

Ma tunnen, et teil on kahtlusi... Noh, olgu, märkige aeg! Mine!

Esmalt lahendage see võrrand oma peas:

Kui teile meeldib see sait...

Muide, mul on teie jaoks veel paar huvitavat saiti.)

Saab harjutada näidete lahendamist ja teada saada oma taset. Testimine kiirkinnitusega. Õpime - huviga!)

Saate tutvuda funktsioonide ja tuletistega.

Logaritme, nagu kõiki numbreid, saab igati liita, lahutada ja teisendada. Aga kuna logaritmid pole päris tavalised arvud, siis siin kehtivad reeglid, mida kutsutakse peamised omadused.

Neid reegleid pead kindlasti teadma – ilma nendeta ei saa lahendada ühtki tõsist logaritmilist ülesannet. Lisaks on neid väga vähe – ühe päevaga saab kõik selgeks. Nii et alustame.

Logaritmide liitmine ja lahutamine

Vaatleme kahte samade alustega logaritmi: log a x ja logi a y. Seejärel saab neid liita ja lahutada ning:

  1. logi a x+ palk a y=logi a (x · y);
  2. logi a x− logi a y=logi a (x : y).

Seega on logaritmide summa võrdne korrutise logaritmiga ja erinevus on võrdne jagatise logaritmiga. Märge: võtmehetk Siin - identsed põhjused. Kui põhjused on erinevad, siis need reeglid ei tööta!

Need valemid aitavad teil arvutada logaritmiline avaldis isegi siis, kui selle üksikuid osi ei loeta (vt õppetundi "Mis on logaritm"). Vaadake näiteid ja vaadake:

Palk 6 4 + palk 6 9.

Kuna logaritmidel on samad alused, kasutame summa valemit:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Ülesanne. Leidke avaldise väärtus: log 2 48 − log 2 3.

Alused on samad, kasutame erinevuse valemit:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Ülesanne. Leidke avaldise väärtus: log 3 135 − log 3 5.

Jällegi on alused samad, seega on meil:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Nagu näete, koosnevad algsed avaldised "halbadest" logaritmidest, mida eraldi ei arvutata. Kuid pärast teisendusi saadakse täiesti normaalsed arvud. Paljud on sellele faktile üles ehitatud proovipaberid. Jah, ühtsel riigieksamil pakutakse testilaadseid väljendeid täie tõsidusega (mõnikord praktiliselt muudatusteta).

Eksponenti väljavõtmine logaritmist

Teeme nüüd ülesande pisut keerulisemaks. Mis siis, kui logaritmi alus või argument on aste? Seejärel saab selle astme eksponendi logaritmi märgist välja võtta järgmiste reeglite järgi:

Seda on lihtne märgata viimane reegel järgneb kahele esimesele. Kuid parem on seda ikkagi meeles pidada - mõnel juhul vähendab see arvutuste mahtu märkimisväärselt.

Muidugi on kõik need reeglid mõistlikud, kui järgitakse logaritmi ODZ-d: a > 0, a ≠ 1, x> 0. Ja veel üks asi: õppige rakendama kõiki valemeid mitte ainult vasakult paremale, vaid ka vastupidi, s.t. Saate sisestada enne logaritmi märki olevad arvud logaritmi endasse. See on see, mida kõige sagedamini nõutakse.

Ülesanne. Leidke avaldise väärtus: log 7 49 6 .

Vabaneme argumendi astmest esimese valemi abil:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Ülesanne. Leidke väljendi tähendus:

[Pildi pealdis]

Pange tähele, et nimetaja sisaldab logaritmi, mille alus ja argument on täpsed astmed: 16 = 2 4 ; 49 = 7 2. Meil on:

[Pildi pealdis]

ma arvan, et viimane näide vaja selgitust. Kuhu kadusid logaritmid? Kuni viimase hetkeni töötame ainult nimetajaga. Esitasime seal seisva logaritmi aluse ja argumendi astmetena ning võtsime välja astendajad - saime “kolmekorruselise” murru.

Vaatame nüüd põhifraktsiooni. Lugeja ja nimetaja sisaldavad sama arvu: log 2 7. Kuna log 2 7 ≠ 0, saame murdosa vähendada - 2/4 jääb nimetajasse. Aritmeetika reeglite järgi saab nelja üle kanda lugejasse, mida ka tehti. Tulemuseks oli vastus: 2.

Üleminek uuele vundamendile

Rääkides logaritmide liitmise ja lahutamise reeglitest, rõhutasin konkreetselt, et need töötavad ainult samade alustega. Mis siis, kui põhjused on erinevad? Mis siis, kui need ei ole sama arvu täpsed astmed?

Appi tulevad uuele sihtasutusele ülemineku valemid. Sõnastame need teoreemi kujul:

Olgu antud logaritmi logi a x. Siis suvalise numbri jaoks c selline, et c> 0 ja c≠ 1, võrdsus on tõene:

[Pildi pealdis]

Eelkõige, kui paneme c = x, saame:

[Pildi pealdis]

Teisest valemist järeldub, et logaritmi alust ja argumenti saab vahetada, kuid sel juhul “pööratakse ümber” kogu avaldis, s.t. logaritm ilmub nimetajasse.

Neid valemeid leidub tavapärastes harva numbrilised avaldised. Seda, kui mugavad need on, saab hinnata ainult logaritmiliste võrrandite ja võrratuste lahendamisel.

Siiski on probleeme, mida ei saa üldse lahendada peale uude sihtasutusse kolimise. Vaatame paari neist:

Ülesanne. Leidke avaldise väärtus: log 5 16 log 2 25.

Pange tähele, et mõlema logaritmi argumendid sisaldavad täpseid võimsusi. Võtame välja näitajad: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2 log 2 5;

Nüüd pöörame teist logaritmi ümber:

[Pildi pealdis]

Kuna tegurite ümberkorraldamisel korrutis ei muutu, korrutasime rahulikult nelja ja kahega ning seejärel tegelesime logaritmidega.

Ülesanne. Leidke avaldise väärtus: log 9 100 lg 3.

Esimese logaritmi alus ja argument on täpsed võimsused. Paneme selle kirja ja vabaneme näitajatest:

[Pildi pealdis]

Nüüd vabaneme kümnendlogaritmist, liikudes uuele alusele:

[Pildi pealdis]

Põhilogaritmiline identiteet

Sageli on lahendusprotsessis vaja esitada arv logaritmina antud baasile. Sel juhul aitavad meid järgmised valemid:

Esimesel juhul number n muutub argumendis seisva astme näitajaks. Number n võib olla absoluutselt ükskõik, sest see on lihtsalt logaritmi väärtus.

Teine valem on tegelikult parafraseeritud määratlus. Seda nimetataksegi: logaritmiline põhiidentiteet.

Tegelikult, mis saab siis, kui number b tõsta sellise astmeni, et arv b sellele astmele annab numbri a? See on õige: saate sama numbri a. Lugege see lõik uuesti hoolikalt läbi – paljud inimesed jäävad selle peale kinni.

Nagu uude baasi liikumise valemid, on ka põhilogaritmiline identiteet mõnikord ainus võimalik lahendus.

Ülesanne. Leidke väljendi tähendus:

[Pildi pealdis]

Pange tähele, et log 25 64 = log 5 8 - lihtsalt võttis ruudu logaritmi baasist ja argumendist. Võttes arvesse võimude korrutamise reegleid samal alusel, saame:

[Pildi pealdis]

Kui keegi veel ei tea, siis see oli päris ühtse riigieksami ülesanne :)

Logaritmiline ühik ja logaritmiline null

Kokkuvõtteks annan kaks identiteeti, mida vaevalt saab omadusteks nimetada – pigem on need logaritmi definitsiooni tagajärjed. Need esinevad pidevalt probleemides ja tekitavad üllataval kombel probleeme isegi "edasijõudnud" õpilastele.

  1. logi a a= 1 on logaritmiline ühik. Pidage üks kord meeles: logaritm mis tahes baasile a sellest baasist on võrdne ühega.
  2. logi a 1 = 0 on logaritmiline null. Alus a võib olla ükskõik milline, kuid kui argument sisaldab ühte, on logaritm võrdne nulliga! Sest a 0 = 1 on definitsiooni otsene tagajärg.

See on kõik omadused. Harjutage kindlasti nende rakendamist! Laadige õppetunni alguses petuleht alla, printige see välja ja lahendage probleemid.