Портал о ремонте ванной комнаты. Полезные советы

Рассчитываем скорость звука в км.

Большинство людей прекрасно понимают, что такое звук. Он ассоциируется со слухом и связан с физиологическими и психологическими процессами. В головном мозге осуществляется переработка ощущений, которые поступают через органы слуха. Скорость звука зависит от многих факторов.

Звуки, различаемые людьми

В общем смысле слова звук - это физическое явление, которое вызывает воздействие на органы слуха. Он имеет вид продольных волн различной частоты. Люди могут слышать звук, частота которого колеблется в пределах 16-20000 Гц. Эти упругие продольные волны, которые распространяются не только в воздухе, но и в других средах, достигая уха человека, вызывают звуковые ощущения. Люди могут слышать далеко не все. Упругие волны частотой меньше 16 Гц называют инфразвуком, а выше 20000 Гц - ультразвуком. Их человеческое ухо не может слышать.

Характеристики звука

Различают две основные характеристики звука: громкость и высоту. Первая из них связана с интенсивностью упругой звуковой волны. Существует и другой важный показатель. Физической величиной, которая характеризует высоту, является частота колебаний упругой волны. При этом действует одно правило: чем она больше, тем звук выше, и наоборот. Еще одной важнейшей характеристикой является скорость звука. В разных средах она бывает различной. Она представляет собой скорость распространения упругих звуковых волн. В газовой среде этот показатель будет меньше, чем в жидкостях. Скорость звука в твердых телах самая высокая. При этом для волн продольных она всегда больше, чем для поперечных.

Скорость распространения звуковых волн

Этот показатель зависит от плотности среды и ее упругости. В газовых средах на него действует температура вещества. Как правило, скорость звука не зависит от амплитуды и частоты волны. В редких случаях, когда эти характеристики оказывают влияние, говорят о так называемой дисперсии. Скорость звука в парах или газах колеблется в пределах 150-1000 м/с. В жидких средах она составляет уже 750-2000 м/с, а в твердых материалах - 2000-6500 м/с. В нормальных условиях скорость звука в воздухе достигает 331 м/с. В обычной воде - 1500 м/с.

Скорость звуковых волн в разных химических средах

Скорость распространения звука в разных химических средах неодинакова. Так, в азоте она составляет 334 м/с, в воздухе - 331, в ацетилене - 327, в аммиаке - 415, в водороде - 1284, в метане - 430, в кислороде - 316, в гелии - 965, в угарном газе - 338, в углекислоте - 259, в хлоре - 206 м/с. Скорость звуковой волны в газообразных средах возрастает с повышением температуры (Т) и давления. В жидкостях она чаще всего уменьшается при увеличении Т на несколько метров за секунду. Скорость звука (м/с) в жидких средах (при температуре 20°С):

Вода - 1490;

Этиловый спирт - 1180;

Бензол - 1324;

Ртуть - 1453;

Углерод четыреххлористый - 920;

Глицерин - 1923.

Из вышеуказанного правила исключением является только вода, в которой с ростом температуры увеличивается и скорость звука. Своего максимума она достигает при нагревании этой жидкости до 74°С. При дальнейшем повышении температуры скорость звука уменьшается. При увеличении давления она будет увеличиваться на 0,01%/1 Атм. В соленой морской воде с ростом температуры, глубины и солености будет повышаться и скорость звука. В других средах этот показатель изменяется по-разному. Так, в смеси жидкости и газа скорость звука зависит от концентрации ее составляющих. В изотопном твердом теле она определяется его плотностью и модулями упругости. В неограниченных плотных средах распространяются поперечные (сдвиговые) и продольные упругие волны. Скорость звука (м/с) в твердых веществах (продольной/поперечной волны):

Стекло - 3460-4800/2380-2560;

Плавленый кварц - 5970/3762;

Бетон - 4200-5300/1100-1121;

Цинк - 4170-4200/2440;

Тефлон - 1340/*;

Железо - 5835-5950/*;

Золото - 3200-3240/1200;

Алюминий - 6320/3190;

Серебро - 3660-3700/1600-1690;

Латунь - 4600/2080;

Никель - 5630/2960.

В ферромагнетиках скорость звуковой волны зависит от величины напряженности магнитного поля. В монокристаллах скорость звуковой волны (м/с) зависит от направления ее распространения:

  • рубин (продольная волна) - 11240;
  • сульфид кадмия (продольная/поперечная) - 3580/4500;
  • ниобат лития (продольная) - 7330.

Скорость звука в вакууме равняется 0, поскольку в такой среде он просто не распространяется.

Определение скорости звука

Все то, что связано со звуковыми сигналами, интересовало наших предков еще тысячи лет назад. Над определением сущности этого явления работали практически все выдающиеся ученые древнего мира. Еще античные математики установили, что звук обуславливается колебательными движениями тела. Об этом писали Евклид и Птолемей. Аристотель установил, что скорость звука отличается конечной величиной. Первые попытки определения данного показателя были предприняты Ф. Бэконом в XVII в. Он пытался установить скорость путем сравнения временных промежутков между звуком выстрела и вспышкой света. На основании этого метода группа физиков Парижской Академии наук впервые определила скорость звуковой волны. В различных условиях эксперимента она составляла 350-390 м/с. Теоретическое обоснование скорости звука впервые в своих «Началах» рассмотрел И. Ньютон. Произвести правильное определение этого показателя получилось у П.С. Лапласа.

Формулы скорости звука

Для газообразных сред и жидкостей, в которых звук распространяется, как правило, адиабатически, изменение температуры, связанное с растяжениями и со сжатиями в продольной волне, не может быстро выравниваться за короткий период времени. Очевидно, что на этот показатель влияет несколько факторов. Скорость звуковой волны в однородной газовой среде или жидкости определяется по следующей формуле:

где β - адиабатическая сжимаемость, ρ - плотность среды.

В частных производных данная величина считается по такой формуле:

c 2 = -υ 2 (δρ/δυ) S = -υ 2 Cp/Cυ (δρ/δυ) T ,

где ρ, T, υ - давление среды, ее температура и удельный объем; S - энтропия; Cp - изобарная теплоемкость; Cυ - изохорная теплоемкость. Для газовых сред эта формула будет выглядеть таким образом:

c 2 = ζkT/m= ζRt/M = ζR(t + 273,15)/M = ά 2 T,

где ζ - величина адиабаты: 4/3 для многоатомных газов, 5/3 для одноатомных, 7/5 для двухатомных газов (воздух); R - газовая постоянная (универсальная); T - абсолютная температура, измеряемая в кельвинах; k - постоянная Больцмана; t - температура в °С; M - молярная масса; m - молекулярная масса; ά 2 = ζR/ M.

Определение скорости звука в твердом теле

В твердом теле, обладающем однородностью, существует два вида волн, различающихся поляризацией колебаний по отношению направления их распространения: поперечная (S) и продольная (P). Скорость первой (C S) всегда будет ниже, чем второй (C P):

C P 2 = (K + 4/3G)/ρ = E(1 - v)/(1 + v)(1-2v)ρ;

C S 2 = G/ρ = E/2(1 + v)ρ,

где K, E, G - модули сжатия, Юнга, сдвига; v - коэффициент Пуассона. Во время расчета скорости звука в твердом теле используются адиабатические модули упругости.

Скорость звука в многофазных средах

В многофазных средах благодаря неупругому поглощению энергии скорость звука находится в прямой зависимости от частоты колебаний. В двухфазной пористой среде она рассчитывается по уравнениям Био-Николаевского.

Заключение

Измерение скорости звуковой волны используется при определении различных свойств веществ, таких как модули упругости твердого тела, сжимаемость жидкостей и газа. Чувствительным методом определения примесей является измерение малых изменений скорости звуковой волны. В твердых телах колебание этого показателя позволяет проводить исследования зонной структуры полупроводников. Скорость звука является очень важной величиной, измерение которой позволяет узнать многое о самых разных средах, телах и других объектах научных исследований. Без умения ее определять были бы невозможны многие научные открытия.

Первые попытки понять природу возникновения звука были сделаны более двух тысяч лет назад. В трудах древнегреческих ученых Птолемея и Аристотеля делаются верные предположения о том, что звук порождается колебаниями тела. Более того, Аристотель утверждал, что скорость звука является измеримой и конечной величиной. Конечно, в Древней Греции не было технических возможностей для сколько-нибудь точных измерений, поэтому скорость звука была относительно точно измерена лишь в семнадцатом веке. Для этого использовался метод сравнения между временем обнаружения вспышки от выстрела и временем, через которое до наблюдателя долетал звук. В результате многочисленных экспериментов ученые пришли к выводу, что звук распространяется в воздухе со скоростью от 350 до 400 метров в секунду.

Исследователи также выяснили, что значение скорости распространения звуковых волн в той или иной среде напрямую зависит от плотности и температуры этой среды. Так, чем разреженнее воздух, тем медленнее по нему перемещается звук. Кроме того, скорость звука тем выше, чем выше температура среды. На сегодняшний день принято считать, что скорость распространения звуковых волн в воздухе при нормальных условиях (на уровне моря при температуре 0ºС) равняется 331 метру в секунду.

Число Маха

В реальной жизни скорость звука является значимым параметром в авиации, однако на тех высотах, где обычно , характеристики окружающей среды сильно отличаются от нормальных. Именно поэтому в авиации используется универсальное понятие, которое называется число Маха, названное в честь австрийского Эрнста Маха. Это число представляет собой скорость объекта, поделенную на местную скорость звука. Очевидно, что чем меньше скорость звука в среде с конкретными параметрами, тем больше будет число Маха, даже если скорость самого объекта не изменится.

Практическое применение этого числа связано с тем, что движение на скорости, которая выше скорости звука, существенно отличается от перемещения на дозвуковых скоростях. В основном, это связано с изменением аэродинамики самолета, ухудшением его управляемости, нагревом корпуса, а также с сопротивлением волн. Данные эффекты наблюдаются лишь тогда, когда число Маха превышает единицу, то есть, объект преодолевает звуковой барьер. На данный момент существуют формулы, которые позволяют вычислить скорость звука при тех или иных параметрах воздуха, а, следовательно, рассчитать число Маха для разных условий.

Видео по теме

Источники:

  • Частота колебаний камертона 440 Гц

Звучать могут различные физические объекты, находящиеся в твердом, жидком или газообразном состоянии. Например, вибрирующая струна или выдуваемая из дудочки струя воздуха.

Звук - это волновые колебания среды, воспринимаемые человеческим ухом. Источниками являются различные физические тела. Вибрация источника возбуждает колебания в окружающей среде, которые распространяются в пространстве. Звуковые волны занимают частотный диапазон от 20 Гц до 20кГц, между инфразвуком и ультразвуком.

Механические колебания возникают только там, где есть упругая , поэтому в вакууме звук распространяться не может. Скорость звука - это скорость прохождения звуковой волны по , окружающей источник звука.

Сквозь газообразную среду, жидкости и в твердые тела звук проходит с разной скоростью. В воде звук распространяется быстрее, чем в воздухе. В твердых телах скорость звука выше, чем в . Для каждого вещества скорость распространения звука постоянна. Т.е. скорость звука зависит от плотности и упругости среды, а не от частоты звуковой волны и ее амплитуды.

Звуковая может огибать встреченное препятствие. Это называется дифракцией. У низких звуков дифракция лучше, чем у высоких. Здесь

Скорость звука - скорость распространения упругих волн в среде: как продольных (в газах, жидкостях или твёрдых телах), так и поперечных, сдвиговых (в твёрдых телах). Определяется упругостью и плотностью среды: как правило, в газах скорость звука меньше, чем в жидкостях , а в жидкостях - меньше, чем в твёрдых телах. Также, в газах скорость звука зависит от температуры данного вещества , в монокристаллах - от направления распространения волны. Обычно не зависит от частоты волны и её амплитуды ; в тех случаях, когда скорость звука зависит от частоты, говорят о дисперсии звука.

Энциклопедичный YouTube

  • 1 / 5

    Уже у античных авторов встречается указание на то, что звук обусловлен колебательным движением тела (Птолемей , Евклид). Аристотель отмечает, что скорость звука имеет конечную величину, и правильно представляет себе природу звука . Попытки экспериментального определения скорости звука относятся к первой половине XVII в. Ф.Бэкон в «Новом органоне » указал на возможность определения скорости звука путём сравнения промежутков времени между вспышкой света и звуком выстрела. Применив этот метод, различные исследователи (М.Мерсенн , П.Гассенди , У.Дерхам , группа учёных Парижской академии наук - Д.Кассини , Ж.Пикар , Гюйгенс , Рёмер) определили значение скорости звука (в зависимости от условий экспериментов, 350-390 м/с). Теоретически вопрос о скорости звука впервые рассмотрел И.Ньютон в своих «Началах ». Ньютон фактически предполагал изотермичность распространения звука, поэтому получил заниженную оценку. Правильное теоретическое значение скорости звука было получено Лапласом .

    Расчёт скорости в жидкости и газе

    Скорость звука в однородной жидкости (или газе) вычисляется по формуле:

    c = 1 β ρ {\displaystyle c={\sqrt {\frac {1}{\beta \rho }}}}

    В частных производных:

    c = − v 2 (∂ p ∂ v) s = − v 2 C p C v (∂ p ∂ v) T {\displaystyle c={\sqrt {-v^{2}\left({\frac {\partial p}{\partial v}}\right)_{s}}}={\sqrt {-v^{2}{\frac {C_{p}}{C_{v}}}\left({\frac {\partial p}{\partial v}}\right)_{T}}}}

    где β {\displaystyle \beta } - адиабатическая сжимаемость среды; ρ {\displaystyle \rho } - плотность; C p {\displaystyle C_{p}} - изобарная теплоемкость; C v {\displaystyle C_{v}} - изохорная теплоемкость; p {\displaystyle p} , v {\displaystyle v} , T {\displaystyle T} - давление, удельный объём и температура среды; s {\displaystyle s} - энтропия среды.

    Для растворов и других сложных физико-химических систем (например, природный газ, нефть) данные выражения могут давать очень большую погрешность.

    Твёрдые тела

    При наличии границ раздела, упругая энергия может передаваться посредством поверхностных волн различных типов, скорость которых отличается от скорости продольных и поперечных волн. Энергия этих колебаний может во много раз превосходить энергию объемных волн.

    СКОРОСТЬ ЗВУКА - скорость распространения в среде упругой волны. Определяется упругостью и плотностью среды. Для , бегущей без изменения формы со скоростью с в направлении оси х , звуковое давление р можно представить в виде р = р(х - - ct) , где t - время. Для плоской гармония, волны в среде без дисперсии и С. з. выражается через частоту w и k ф-лой с = w/k. Со скоростью с распространяется фаза гармонич. волны, поэтому с наз. также фазовой С. з. В средах, в к-рых форма произвольной волны меняется при распространении, гармонич. волны тем не менее сохраняют свою форму, но фазовая скорость оказывается различной для разных частот, т. е. имеет место дисперсия звука .В этих случаях пользуются также понятием групповой скорости . При больших амплитудах появляются нелинейные эффекты (см. Нелинейная акустика ),приводящие к изменению любых волн, в т. ч. и гармонических: скорость распространения каждой точки профиля волны зависит от величины давления в этой точке, возрастая с ростом давления, что и приводит к искажению формы волны.

    Скорость звука в газах и жидкостях . В газах и жидкостях звук распространяется в виде объёмных волн сжатия - разряжения. Если процесс распространения происходит адиабатически (что, как правило, и имеет место), т. е. изменение темп-ры в звуковой волне не успевает выравниваться и за 1 / 2 , периода тепло из нагретых (сжатых) участков не успевает перейти к холодным (разреженным), то С. з. равна , где Р - давление в веществе, - его плотность, а индекс s показывает, что производная берётся при постоянной энтропии. Эта С. з. наз. адиабатической. Выражение для С. з. может быть записано также в одной из следующих форм:

    где К ад - адиабатич. модуль всестороннего сжатия вещества, - адиабатич. сжимаемость, - изотермич. сжимаемость, = - отношение теплоёмкостей при постоянных давлении и объёме.

    В ограниченных твёрдых телах кроме продольных и поперечных волн имеются и др. типы волн. Так, вдоль свободной поверхности твёрдого тела или вдоль границы его с др. средой распространяются поверхностные акустические волны , скорость к-рых меньше скорости объёмных волн, характерных для данного материала. Для пластин, стержней и др. твёрдых акустич. волноводов характерны нормальные волны ,скорость к-рых определяется не только свойствами вещества, но и геометрией тела. Так, напр., С. з. для продольной волны в стержне с ст, поперечные размеры к-рого много меньше длины волны звука, отличается от С. з. в неограниченной среде с l (табл. 3):

    Методы измерения С.з. можно подразделить на резонансные, интерферометрические, импульсные и оптические (см. Дифракция света на ультразвуке ).Наиб. точности измерения достигают с помощью импульсно-фазовых методов. Оптич. методы дают возможность измерять С. з. на гиперзвуковых частотах (вплоть до 10 11 -10 12 Гц). Точность абс. измерений С. з. на лучшей аппаратуре ок. 10 -3 % , тогда как точность относит. измерений порядка 10 -5 % (напр., при изучении зависимости с от темп-ры или магн. поля пли от концентрации примесей или дефектов).

    Измерения С. з. используются для определения мн. свойств вещества, таких, как величина отношения теплоёмкостей для газов, сжимаемости газов и жидкостей, модулей упругости твёрдых тел, дебаевской темп-ры и др. (см. Молекулярная акустика) . Определение малых изменений С. з. является чувствит. методом фиксирования примесей в газах и жидкостях. В твёрдых телах измерение С. з. и её зависимости от разл. факторов (темп-ры, магн. поля и др.) позволяет исследовать строение вещества: зонную структуру полупроводников, строение поверхности Ферми в металлах и пр.

    Лит.: Ландау Л. Д., Л и ф ш и ц Е. М., Теория упругости, 4 изд., М., 1987; их же, Гидродинамика, 4 изд., М., 1988; Бергман Л., и его применение в науке и технике, пер. с нем., 2 изд., М., 1957; Михайлов И. Г., Соловьев В. А., Сырников Ю. П., Основы молекулярной акустики, М., 1964; Таблицы для расчета скорости звука в морской воде, Л., 1965; Физическая акустика, под ред. У. Мэзона, пер. с англ., т. 1, ч. А, М., 1966, гл. 4; т. 4, ч. Б, М., 1970, гл. 7; Колесников А. Е., Ультразвуковые измерения, 2 изд., М., 1982; Т р у э л л Р., Э л ь б а у м Ч., Ч и к Б., Ультразвуковые методы в физике твердого тела, пер. с англ., М., 1972; Акустические кристаллы, под ред. М. П. Шаскольской, М., 1982; Красильни ков В. А., Крылов В. В., Введение в физическую акустику, М., 1984. А. Л. Полякова .

      Наблюдатель по часам отмечал время, прошедшее между появлением вспышки и моментом, когда был услышан звук. Временем, за которое свет проходил это расстояние, пренебрегали. Для того чтобы в наибольшей степени устранить влияние ветра, с каждой стороны было по пушке и наблюдателю и каждая пушка стреляла примерно в одно и то же время.

      Бралось среднее значение двух замеров времени, и на его основании . Она оказалась примерно равной 340 мс -1 . Большим недостатком этого способа измерения было то, что не всегда пушка оказывалась под рукой!

      Многие экзаменуемые описывают похожий способ. Один ученик стоит на одной стороне футбольного поля состартовым пистолетом, а другой - на другой его стороне с секундомером. Расстояние между ними тщательно измеряется рулеткой. Ученик пускает секундомер, когда видит, как из ствола появляется дымок, и останавливает его, услышав звук. То же самое проделывается, когда они поменяются местами, чтобы компенсировать воздействие ветра. Затем определяется среднее время.

      Поскольку звук распространяется со скоростью 340 мс -1 , то секундомер, скорее всего, не будет достаточно точен. Предпочтительнее оперировать сантисекундами или миллисекундами.

      Измерение скорости звука с помощью эха

      Когда произведен короткий резкий звук, например хлопок, то волновой импульс может быть отражен крупным препятствием, например стеной, и услышан наблюдателем. Этот отраженный импульс называется эхом. Представим, что на расстоянии 50 м от стены стоит человек и производит один хлопок. Когда эхо услышано, звук прошел 100 м. Измерение этого интервала секундомером не будет достаточно точным. Вместе с тем если второй человек держит секундомер, а первый хлопает, то время для большого числа звуков эха может быть получено с достаточной точностью.

      Предположим, что расстояние, на котором хлопающий человек находится перед стеной, составляет 50 м, а временной интервал между первым и сто первым хлопком составляет 30 с, тогда:

      скорость звука = пройденное расстояние / время одного хлопка = 100м: 30 / 100 с = 333 мс -1

      Измерение скорости звука с помощью осциллографа

      Более сложным способом прямого измерения скорости звука является применение осциллографа. Громкоговоритель испускает импульсы через равные интервалы, и они фиксируются катодно-лучевым осциллографом (см. рис.). Когда импульс получен микрофоном, он также будет зарегистрирован осциллографом. Если известны временные характеристики осциллографа, то может быть найден временной интервал между двумя импульсами.

      Замеряется расстояние между громкоговорителем и микрофоном. Скорость звука может быть найдена по формуле скорость = расстояние / время.

      Скорость звука в различных средах

      Скорость звука выше в твердых телах, чем в жидкостях, и выше в жидкостях, чем в газах. Проведенные в прошлом эксперименты на Женевском озере показали, что скорость звука в воде значительно выше, чем в воздухе. В пресной воде скорость звука составляет 1410 мс -1 , в морской воде - 1540 мс -1 . В железе скорость звука составляет примерно 5000 мс -1 .

      Посылая звуковые сигналы и отмечая временной интервал до прихода отраженного сигнала (эха), можно определить глубину моря и местонахождение косяков рыбы. Во время войны эхолоты высокочастотного звука применялись для обнаружения мин. Летучие мыши в полете используют особую форму эхосигнала для обнаружения препятствий. Летучая мышь испускает высокочастотный звук, который отражается от объекта на ее пути. Мышь слышит эхо, определяет местонахождение объекта и уклоняется от него.

      Скорость звука в воздухе зависит от атмосферных условий. Скорость звука пропорциональна квадратному корню из частного от деления давления на плотность. Изменения давлении не влияют на скорость звука в воздухе. Это связано с тем, что увеличение давления влечет за собой соответствующее увеличение плотности и отношение давления к плотности остается постоянным.

      На скорость звука в воздухе (как и в любом газе) влияют изменения температуры. Законы для газов указывают, что отношение давления к плотности пропорционально . Таким образом, скорость звука пропорциональна √T. Звуковой барьер легче преодолевать на больших высотах, потому что там ниже температура.

      На скорость звука влияют изменения влажности. Плотность водяного пара меньше плотности сухого воздуха при одинаковом давлении. Ночью, когда влажность повышается, звук распространяется быстрее. Звуки слышны более ясно тихой туманной ночью.

      Это происходит частично вследствие повышенной влажности, а частично из-за того, что в этих условиях обычно имеет место температурная инверсия, при которой звуки преломляются таким образом, что они не рассеиваются.