Портал о ремонте ванной комнаты. Полезные советы

Характеристика структурно механические свойства мучного теста. Международный журнал прикладных и фундаментальных исследований

1

Обосновано количество введения соевой муки в рецептуру песочного теста. Применение соевой муки повышает пригодность теста к машинной обработке, в частности к точному дозированию штучных изделий. Присутствие жира в соевой муке имеет большое значение для текстуры и мягкости песочных изделий, а белки способствуют вовлечению воздуха и образованию мелкой пористости теста. На основании органолептических показателей песочных кексов с различным содержанием соевой муки выявлен наилучший образец, содержащий 5 % вносимой добавки от общего количества пшеничной муки, идущей по рецептуре. Показано влияние количества вносимой в рецептуру соевой муки на реологические свойства песочного теста. Введение 5 %-го количества соевой муки незначительно увеличивает жесткость песочного теста, что положительно влияет на формоустойчивость песочных кексов с фруктово-ягодными начинками и не ухудшает органолептические показатели готовых изделий.

мука соевая

тесто песочное

органолептическая оценка

реология

1. Корячкин В.П., Корячкина С.Я., Румянцева В.В. Разработка технологий производства мучных кондитерских изделий из песочного теста на ржаной муке с учетом реологических свойств полуфабрикатов // Успехи современного естествознания. – 2006. – № 7 – С. 68–74.

2. Кузнецова Л.С., Сиданова М.Б. Технология приготовления мучных кондитерских изделий. – М.: Мастерство. 2002. – 320 с.

3. Перетятко Т.И. Мучные кондитерские изделия. – Ростов-н/Д.: Феникс, 2005. – 384 с.

Изделия из песочного теста относятся к наиболее распространенным видам мучной кондитерской продукции, удельный вес рецептур которых составляет порядка 17 % .

Однако количество рецептур производимых полуфабрикатов, на которых базируется все многообразие ассортимента изделий из песочного теста, согласно действующей нормативно-технической документации ограниченно и может удовлетворить только потребителей с консервативными вкусами, без учета физиологических особенностей, национальных традиций населения, а также региональных условий производства.

С целью совершенствования ассортимента и разработки новых рецептур мучных кондитерских изделий из песочного теста, а также приданию им дополнительных вкусовых характеристик проведено изучение влияния соевой муки на реологические свойства песочных кексов с фруктово-ягодной начинкой.

Химический состав соевой муки считается главной отличительной особенностью продукта. В ее состав входит большое количество белков, а также витаминов группы А, В и Е. Кроме того, соевая мука обогащена калием, фосфором, а также магнием и кальцием. Поэтому соевую муку используют в пищевой промышленности как витаминную пищевую добавку природного происхождения. Мука соевая обладает повышенной эмульгирующей способностью, что позволяет готовить термически стабильные эмульсии и применять соевую муку как функциональную добавку в кондитерской и хлебопекарной промышленности для снижения рецептурных норм закладки сухого молока, яиц, животных жиров, для длительного сохранения свежести готовых изделий, а также улучшения их цвета. Применение такой муки повышает пригодность теста к машинной обработке, в частности к точному дозированию штучных изделий. Присутствие жира в соевой муке имеет большое значение для текстуры и мягкости песочных изделий, а белки способствуют вовлечению воздуха и образованию мелкой пористости. Это объясняет технологичность использования соевой муки в песочном тесте .

Цель исследования

Целью данного исследования является улучшение структурных свойств песочного теста и обогащение песочных изделий белком, пищевыми волокнами, витаминами и минералами, которые содержаться в соевой муке.

Предметом исследования стали песочные кексы с фруктово-ягодной начинкой с заменой части пшеничной муки на полуобезжиренную дезодорированную соевую муку. Кексы представляют собой закрытую корзиночку, внутри которой находится фруктово-ягодная начинка.

Результаты исследования и их обсуждение

Для песочного теста используют муку с пониженным содержанием клейковины, чтобы выпеченные изделия были более пористые и рассыпчатые. Для данной категории кексов нужна незначительная жесткость песочной корзиночке и крышке, чтобы фруктовая начинка не вытекала при выпечке и при хранении изделия лучше сохраняли форму.

В связи с тем, что завышенное содержание соевой муки в песочном тесте сказывается отрицательно на органолептические показатели песочных изделий, была предпринята попытка добавления в песочное тесто соевой муки в количестве 5, 8, 12 % от общего содержания пшеничной муки с целью улучшения пластично-вязких свойств песочного теста для данной категории кексов.

В результате органолептической оценки модельных образцов было выявлено, что наилучшие органолептические показатели имели изделия, содержащие 5 % соевой муки. Выпеченные изделия имели отлично пропеченную, тонкостенную структуру с хорошей хрупкостью, с равномерной пористостью, равномерный золотистый цвет, очень приятный, ясно выраженный вкус. Песочная корзиночка обладала лучшей формоустойчивостью в сравнении с классическим образцом.

Песочные кексы с содержанием 8 % соевой муки также имели тонкостенную структуру, с равномерной пористостью, правильную форму, равномерный цвет, но невыраженный вкус.

Песочные кексы с содержанием 12 % соевой муки имели несколько утолщенную структуру, без хрупкости, вкус был недостаточно выраженный, форма и цвет изделия соответствовали нормам.

На основании органолептических показателей песочных кексов с различным содержанием соевой муки можно сделать вывод о том, что наилучшими характеристиками обладают образцы с 5 % заменой пшеничной муки на соевую муку. Об этом свидетельствуют и изученные структурно-механические свойства песочного теста.

Соевая мука не содержит глютен, однако в ней находится повышенное содержание белка, крахмала и пищевых волокон. Именно эти вещества придают песочному тесту упругость и эластичность, так как они связывают влагу, придавая готовым изделиям менее рассыпчатую структуру, что является важным показателем для придания правильной текстуры и формоустойчивости песочных корзиночек.

Для проведения экспериментов по определению реологических свойств песочного теста с добавлением соевой муки был использован лабораторный анализатор текстуры CT3 Brookfield. Он позволяет проводить фундаментальные тесты для исследования реологических свойств твердых веществ, к которым относится песочное тесто.

На графиках (рис. 1-4) наглядно показано влияние количества вносимой в рецептуру соевой муки на реологические свойства песочного теста.

Из рис. 1 и 2 видно, что у образца с 5 % добавлением соевой муки значение модуля упругости и модуля эластичности выше в 1,5 раза в сравнении с классическим образцом. Но подобное увеличение является положительным для данной категории песочных кексов, так как соевая мука в незначительном количестве придает дополнительную прочность песочной корзиночке кекса и увеличивает ее эластичность. В результате чего, начинка лучше удерживается внутри кексов.

Рис. 1. Величина модуля упругости и модуля эластичности песочного теста по классической технологии

Рис. 2. Величина модуля упругости и модуля эластичности песочного теста с 5 % заменой пшеничной муки на соевую муку

Из рис. 3 и 4 видно, что модуль упругости и модуль эластичности песочного полуфабриката после добавления 8 % и 12 % соевой муки увеличивается в 3,5-4 раза. Тесто становиться очень жестким и неэластичным. Оно трудно поддается дальнейшим технологическим операциям, в том числе формованию корзиночек кексов. Это также отрицательно влияет на органолептические показатели выпеченных изделий.

Рис. 3. Величина модуля упругости и модуля эластичности песочного теста с 8 % заменой пшеничной муки на соевую муку

Рис. 4. Величина модуля упругости и модуля эластичности песочного теста с 12 % заменой пшеничной муки на соевую муку

Заключение

На основании влияния различного количества добавляемой соевой муки на реологические свойства песочного теста было доказано, что оптимальным количеством замены пшеничной муки на соевую является 5 % замена. Данное количество соевой муки наилучшим образом влияет на структуру песочного теста, делая его более эластичным, а так же придает готовым выпеченным кексам необходимую формоустойчивость, влияющую на качество и их внешний вид.

Библиографическая ссылка

Кузнецова А.А., Чеснокова Н.Ю., Левочкина Л.В., Голубева Ю.И. ВЛИЯНИЕ СОЕВОЙ МУКИ НА СТРУКТУРНО-МЕХАНИЧЕСКИЕ СВОЙСТВА ПЕСОЧНОГО ТЕСТА // Международный журнал прикладных и фундаментальных исследований. – 2015. – № 12-7. – С. 1174-1177;
URL: https://applied-research.ru/ru/article/view?id=8109 (дата обращения: 17.09.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

        Номер образца

        Продолжительность выдержки, ч


        Е 10 ,

        Па

        η 10

        Па с


        η/Е, с


        П, %

        Э, %

        К , %

        К , %

        1

        2


        0

        2

        0

        2

        8,5/6,0

        3,5/2,9

        12,0/7,6

        6,4/3,8


        5,9/5,4

        1,9/6,2

        6,4/5,4

        3,2/8,4


        69/89

        53/220

        50/71

        50/221


        72/67

        78/45

        77/73

        78/45


        74/64

        82/65

        78/67

        76/70

        59/52

        47/50

        68/-15

        50/-55

    Примечание. В числителе приведены данные по небродящему тесту, в знаменателе - по бродящему.

    Тесто из пшеничной муки I сорта является менее сложной лабильной структурой, чем тесто из муки II сорта: в нем менее активны процессы гидролиза, меньше содержится сахаров и других соединений, изменяющих во времени упруго-эластичные свойства структуры. По этой причине отличия структуры небродяще- го теста из муки I сорта должны быть наиболее отчетливы.

    Как показывают результаты табл. 4.1, непосредственно после замешивания небродящее тесто обоих образцов имело модули сдвига и вязкость, относительные пластичность и эластичность большие, а η/Е меньшее, чем у бродящего теста. После 2-часового брожения вязкость теста и η/Е не уменьшились, как у небродящего теста, а наоборот, увеличились, а пластичность уменьшилась. По указанной причине показатель К имел отрицательную величину, характеризуя не разжижение, а увеличение вязкости структуры.

    Результаты сравнения механических свойств небродящего и бродящего пшеничного теста из двух образцов муки II сорта, приведенные в табл. 3.1, в основном полностью подтверждают закономерности, установленные для теста из муки I сорта; они, однако, представляют несомненный интерес потому, что процесс его выдержки продолжался до 24 ч. Известно, что брожение прессованных хлебопекарных дрожжей при их обычной дозировке (около 1 % к муке) заканчивается обычно на отрезке времени 3-4 ч (продолжительность брожения опары). По истечении этого времени тесто пополняют свежей порцией муки и перемешивают, после чего брожение в нем возобновляется. При отсутствии добавок муки и перемешивания спиртовое брожение уступает кислотному. Такое тесто, приобретая излишние количества этилового спирта и кислот, растворяет белки клейковины (разжижает), теряя углекислоту - уменьшает объем, становится более плотным. Из табл. 3.1 видно, что бродящее тесто после 6 ч и особенно после 24 ч брожения по величинам модулей сдвига, вязкости, относительных пластичности и эластичности приближается к этим показателям небродящего теста. Это показывает, что процессы дрожжевого брожения продолжительностью до 6 ч являются основной причиной существенных отличий структуры бродящего теста от его небродящей структуры. Опытами установлено, что образцы бродящего пшеничного теста из муки I и II сортов имеют структуру, обладающую более совершенными свойствами упругости-эластичности (меньшим модулем сдвига), большей вязкостью и формоустойчивостью (η/Е), а также большей стабильностью во времени в сравнении со структурой небродящего теста. Основной причиной этих отличий следует считать процесс спиртового брожения хлебопекарных дрожжей в бродящем тесте, образование в нем газонаполненных пор, вызывающих перманентное увеличение объема, развитие упруго-пластичных деформаций и упрочнение структуры вследствие ориентации полимеров в плоскостях сдвига. Кислотное брожение в нем менее значительно и, как показано ниже, влияет на эти свойства путем изменений процессов набухания и растворения соединений муки.

    ЗАВИСИМОСТЬ МЕХАНИЧЕСКИХ СВОЙСТВ БРОДЯЩЕГО ТЕСТА И КАЧЕСТВА ХЛЕБА ОТ ВИДА И СОРТА МУКИ

    Качество хлебных изделий - их объемный выход, форма, структура пористости и другие характеристики, определяются сортом муки и соответственно номируются ГОСТами.

    Структура бродящего теста является непосредственным материалом, из которого получают хлебные изделия путем его термической обработки в печи. Представляло интерес исследование биохимических и структурно-механических свойств бродящего пшеничного теста в зависимости от сорта муки. Для указанной цели семь образцов мягких краснозерных пшениц размалывали на лабораторной мельнице трехсортным помолом с общим выходом в среднем 78%. Затем мы исследовали газообразующую и газоудерживающую способность муки, структурно-механические характеристики сброженного теста после его расстойки, а также сырых клейковинных белков и их содержание в муке, удельный объем (в см 3 /г) формового, а также HID круглого подового хлеба, выпеченного по ГОСТ 9404-60. Полученные результаты приведены в табл. 4.2. Они показали, что выход сортовой муки даже в условиях лабораторного опытного помола существенно колеблется и тем сильнее, чем выше ее сорт. Таким образом, технология помола зерна должна оказывать влияние на химический состав, следовательно, и на структуру теста. Она является одним из существенных многочисленных факторов, влияющих на качественные показатели муки, теста и хлебных изделий.

    Таблица 4.2

    Биохимические и структурно-механические характеристики

    белков клейковины бродящего теста и хлеба

    (средние данные)

    Примечание. В числителе данные по белкам, в знаменателе – по тесту.

    Технологические свойства зерна и муки каждого сорта характеризует прежде всего их газообразующая способность. Это свойство характеризует способность зерна и муки превращать химическую энергию окисления углеводов в тепловую и механическую энергию движения бродящего теста, преодолевающу инерцию его массы. Определение газообразующей способности муки сопровождается учетом количества выделенной С0 2 . Ее количество, задержанное тестом, определяет его. газоудерживание по приросту объема. Этот физико-химический показатель характеризует своим обратным значением газопроницаемость теста по углекислому газу. Последняя зависит от структуры и величины основных упруго-пластичных (Е, η, η/Е) характеристик теста. Опыты показали, что газообразующая способность муки значительно увеличивалась от высшего к первому и второму сортам, тогда как объемный выход хлеба, наоборот, понижался.

    Газоудерживающая способность теста находится в прямой зависимости от газообразующей способности; несмотря на это, она в абсолютном и относительном (в % к газообразованию) значениях не увеличивалась, но заметно и закономерно понижалась с понижением сорта муки. Между абсолютным значением удержанного тестом СО и объемными характеристиками хлеба (объемным Выходом, удельным объемом) имеется тесная прямая зависимость. Изложенное позволяет сделать вывод, что данные характеристики качества хлеба определяются в основном не биохимическими, а физико-химическим (газопроницаемостью) и механическими свойствами (η, Е и η/Е ) теста. Последние зависят в основном от соответствующих свойств сырых клейковинных белков и их содержания в тесте.

    Опыты показали, что содержание сырых белков клейковины закономерно увеличивалось с понижением силы зерна и влагоем-кости (вязкости) муки и ее сорта. Структура белков муки высшего сорта имела более значительные величины модуля сдвига, а в среднем - и вязкости, чем структура белков муки I сорта. Это свидетельствует о их большей статистической молекулярной массе. Белки муки I сорта имели величину модуля сдвига и вязкость меньшие, чем эти характеристики белков муки II сорта, но превышали их по величине η/Е . Это характеризует их большую эластичность и формоустойчивость.

    Газоудерживающая способность теста и объемный выход хлебных изделий прямо зависят от продолжительности периода релаксации напряжений клейковинных белков и теста, или η/Е. Отношение вязкости к модулю клейковинных белков муки II сорта было значительно меньшим, чем у белков муки высшего и I сортов.

    Газоудерживающая способность теста из сортовой пшеничной муки зависела от соответствующих величин его модуля сдвига и вязкости. Эти характеристики с понижением сорта муки уменьшались аналогично способности газоудерживания.

    Установлено, что бродящее тесто из муки высшего сорта влажностью 44% подобно сырым клейковинным белкам этой муки имело наиболее значительные величины модулей сдвига, вязкости и отношения вязкости к модулю, наименьшую относительную пластичность. Из этого теста были получены хлебные изделия наиболее высокой пористости, удельного объема формового, а также отношения высоты к диаметру подового хлеба. Таким образом, несмотря на значительную вязкость наименьшее газообразование благодаря высокому η/Е из этой муки получено тесто и хлеб высокого объемного выхода. Высокие величины вязкости и η/Е способствовали получению подового хлеба с наиболее высоким Н/Д .

    Тесто из муки I сорта влажностью 44% по величинам газоудерживания, механическим характеристикам и качеству хлеба незначительно уступало качеству теста из муки высшего сорта, оно имело пониженные на 14-15% вязкость, η/Е теста, Н/Д . Это свидетельствует о том, что снижение вязкости теста из муки I сорта способствовало как развитию удельного объема формового, так и увеличению расплываемости подового хлеба.

    Тесто из муки II сорта имело более высокую влажность (45%). Несмотря на наибольшее газообразование, оно значительно уступало тесту высшего и I сортов муки по величинам газоудерживания, вязкости. Отношение вязкости к модулю у этого теста, как и у клейковинных белков, было меньшим, а относительная пластичность более высокой, чем у теста из муки высшего и I сортов. Качество полученных хлебных изделий было гораздо ниже качества изделий из муки высшего и I сортов.

    В целях уточнения влияния структурно-механических характеристик бродящего теста на физические свойства хлебных изделий мы дифференцировали результаты опытов на две группы. Первая группа образцов каждого сорта имела в среднем более высокие, чем среднеарифметические, модули сдвига и вязкость, вторая группа -более низкие. Учтены также характеристики газоудерживания теста и упруго-пластичных свойств сырых клейковинных белков (табл. 4.3).

Таблица 4.3

Усредненные характеристики теста повышенной и пониженной вязкости

    Из табл. 4.3 видно, что удельный объем хлеба из муки высшего сорта не зависит от величины газоудерживающей способности теста, которая для обеих групп образцов оказалась практически одинаковой. Удельный объем хлеба из муки I и II сортов находился в зависимости от несколько более высокой величины газоудерживающей способности теста второй группы образцов. Количество сырой клейковины по обеим группам образцов для всех сортов муки оказалось примерно одинаковым и не могло влиять на показатели качества хлеба.

    Вязкость теста из муки высшего сорта обеих групп образцов оказалась в обратной зависимости, а отношение вязкости к модулю- в прямой зависимости от соответствующих показателей их сырых клейковинных белков, у теста из муки I и II сортов обеих групп образцов - наоборот.

Структурно-механические, или реологические, свойства пищевых продуктов характеризуют их сопротивляемость воздействию внешней энергии, обусловленную строением и структурой продукта, а также качество пищевых продуктов и учитываются при выборе условий их перевозки и хранения.

К структурно-механическим свойствам относят прочность, твердость, упругость, эластичность, пластичность, вязкость, адгезию, тиксотропию и др.

Прочность - свойство продукта противостоять деформации и механическому разрушению.

Под деформацией понимают изменение формы и размера тела под действием внешних сил. Деформация бывает обратимой и остаточной. При обратимой деформации происходит восстановление первоначальной формы тела после снятия нагрузки. Обратимая деформация может быть упругой, когда происходит моментальное восстановление формы и размера тела, и эластичной, когда на восстановление требуется более или менее продолжительный отрезок времени. Остаточной (пластической) называется деформация, остающаяся после прекращения действия внешних сил.

Пищевые продукты, как правило, характеризуются многокомпонентностью состава; им свойственна как упругая деформация, исчезающая мгновенно, так и эластичная, а также пластическая деформация. Однако у одних преобладают упругие свойства над пластическими, у других - пластические над упругими, а у третьих преобладающими являются эластичные свойства. Если пищевые продукты не способны к остаточным деформациям, то они хрупки, например сахар-рафинад, сушки, сухари и т.д.

Прочность - один из важнейших показателей качества макаронных изделий, сахара-рафинада и других продуктов.

Этот показатель учитывается при переработке зерна на муку, при дроблении винограда (при производстве виноградных вин), при измельчении картофеля (при выработке крахмала) и т.д.

Твердость - способность материала сопротивляться внедрению в него другого более твердого тела. Твердость определяют при оценке качества плодов, овощей, сахара, зерна и других продуктов. Этот показатель играет важную роль при сборе, сортировке, упаковке, транспортировании, хранении и переработке плодов и овощей. Кроме того, твердость может быть объективным показателем степени их зрелости.

Твердость определяют вдавливанием в поверхность продукта твердого наконечника, имеющего форму шарика, конуса или пирамиды. По диаметру образующейся лунки судят о твердости продукта: чем меньше размер лунки, тем тверже продукт. Твердость плодов и овощей определяют по величине нагрузки, которую нужно приложить, чтобы игла или шарик определенных размеров вошли в мякоть плода.

Упругость - способность тел мгновенно восстанавливать свою первоначальную форму или объем после прекращения действия деформирующих сил.

Эластичность - свойство тел постепенно восстанавливать форму или объем в течение некоторого времени.

Показатели упругости и эластичности используют при определении качества теста, клейковины пшеничной муки, свежести мясных, рыбных и других изделий. Они учитываются при изготовлении тары, при определении условий перевоз­ки и хранения пищевых продуктов.

Пластичность - способность тела необратимо деформироваться под действием внешних сил. Свойство сырья изменять свою форму при переработке и сохранять ее в дальнейшем используется при производстве таких пищевых продуктов, как печенье, мармелад, карамель и др.

В результате длительного внешнего воздействия упругая деформация может переходить в пластическую. Этот переход связан с релаксацией - свойством материалов изменять напряжение при постоянной начальной деформации. На релаксации основано изготовление некоторых пищевых продуктов, например колбасных изделий. Из мяса, характеризующегося упругой деформацией, готовят фарш, а из него колбасу, обладающую свойствами пластического материала. Определенные величины релаксации характерны только для продуктов твердожидкой структуры - сыра, творога, фарша и др. Это свойство пищевых продуктов учитывается при перевозке и хранении хлебобулочных изделий, плодов, овощей и др.

Вязкость - способность жидкости оказывать сопротивление перемещению одной ее части относительно другой под действием внешней силы.

Различают вязкость динамическую и кинематическую.

Динамическая вязкость характеризует силу внутреннего трения среды, которую необходимо преодолеть для перемещения единицы поверхности одного слоя относительно другого при градиенте скорости смещения, равном единице. За единицу динамической вязкости принята вязкость такой среды, у которой один слой при действии силы, равной 1 Ньютону на квадратный метр, перемещается со скоростью 1 м/с относительно другого слоя, находящегося на расстоянии 1 м. Измеряется динамическая вязкость в Н-с/м 2 .Кинематической вязкостью называется величина, равная отношению динамической вязкости к плотности среды, и выражается В М 2 /С.

Величина, обратная вязкости, называется текучестью.

На вязкость продуктов влияют температура, давление, влажность или жирность, концентрация сухих веществ и другие факторы. Вязкость пищевых продуктов уменьшается при повышении "влажности, температуры, жирности и возрастает с увеличением концентрации растворов, степени их дисперсности.

Вязкость - свойство, характерное для таких пищевых продуктов, как мед, растительное масло, сиропы, соки, спиртные напитки и др.

Вязкость является показателем качества многих пищевых продуктов и часто характеризует степень их готовности при переработке сырья. Она играет важную роль при производстве многих продуктов, так как активно влияет на технологические процессы - перемешивание, фильтрование, нагревание, экстрагирование и др.

Ползучесть - свойство материала непрерывно деформироваться под воздействием постоянной нагрузки. Это свойство характерно для сыров, мороженого, коровьего масла, мармелада и др. В пищевых продуктах ползучесть проявляется очень быстро, с чем приходится считаться при их обработке и хранении.

Тиксотропия - способность некоторых дисперсных систем самопроизвольно восстанавливать структуру, разрушенную механическим воздействием. Она свойственна дисперсным системам и обнаружена у многих полуфабрикатов и продуктов пищевой промышленности.

Особое место среди структурно-механических свойств занимают поверхностные свойства, к которым относят адгезию, или липкость.

Адгезия характеризует усилие взаимодействия между поверхностями продукта и материала или тары, с которыми он соприкасается. Этот показатель тесно связан с пластичностью, вязкостью пищевых продуктов. Различают два вида адгезии: специфическую (собственно адгезия) и механическую. Первая является результатом сил сцепления между поверхностями материала. Вторая возникает при проникновении адгезива в поры материала и удержании его вследствие механического заклинивания.

Адгезия характерна для таких пищевых продуктов, как сыр, сливочное масло, мясной фарш, некоторые кондитерские изделия и др. Они прилипают к лезвию ножа при разрезании, к зубам при разжевывании.

Излишняя адгезия усложняет технологический процесс, при этом повышаются потери при переработке продукта. Это свойство пищевых продуктов учитывается при выборе способа их переработки, упаковочного материала и условий хранения.

Структурно-механические свойства пищевых продуктов выполняют двойную функцию: они предназначены не только для количественных, но и для качественных характеристик пищевых продуктов. Структурно- механические (реологические) свойства - особенности товаров, проявляющиеся при их деформации. Они характеризуют способность товаров сопротивляться приложенным внешним силам или изменяться под их воздействием. К ним относятся прочность, твердость, упругость, эластичность, пластичность, вязкость, адгезия, тиксотропия и др.

Эти свойства зависят не только от химического состава продуктов, но и от строения, или структуры. Показатели структурно-механических свойств характеризуют качество (консистенцию) пищевых продуктов, заметно изменяются при их разрушении и учитываются при выборе условий их технологической обработки, перевозки и хранения.

Прочность - способность твердого тела сопротивляться механическому разрушению при приложении к нему внешней силы растяжения и сжатия.

Прочность материала зависит от его структуры и пористости. Прочность имеет важное значение для количественной характеристики таких пищевых продуктов, как макароны, сахар-рафинад, печенье, сухари. Если пищевые продукты недостаточно прочные, увеличивается количество лома, крошки, Этот показатель учитывается при переработке зерна на муку, при дроблении винограда, при измельчении картофеля и т.д.

Твердость - местная поверхностная прочность тела, которая характеризуется сопротивлением проникновению в него другого более твердого тела.

Твердость объектов зависит от их природы, формы, структуры, размеров и расположения атомов, а также сил межмолекулярного сцепления. Твердость определяют при оценке степени зрелости свежих плодов и овощей, по твердости сухарных и бараночных изделий судят о процессах черствения.

Деформация - способность объекта изменять размеры, форму и структуру под влиянием внешних воздействий, вызывающих смещение отдельных частиц по отношению друг к другу. Деформация товаров зависит от величины и вида нагрузки, структуры и физико-химических свойств объекта.

Деформации могут быть обратимыми и необратимыми (остаточными). При обратимой деформации первоначальные размеры, форма и структура продуктов восстанавливаются полностью после снятия нагрузки, а при необратимой - не восстанавливаются. Обратимая деформация может быть упругой, когда происходит моментальное восстановление формы и размера объекта, и эластичной, когда на восстановление требуется более или менее продолжительный отрезок времени. Остаточной называется деформация, остающаяся после прекращения действия внешних сил. Остаточная необратимая деформация называется также пластической.


Если внешние силы, приложенные к телу, будут настолько велики, что перемещающиеся в процессе деформации частицы тела потеряют взаимную связь, наступает разрушение тела.

Пищевые продукты, как правило, характеризуются мно-гокомпонентностью состава; им свойственна как упругая деформация, так и эластичная, а также пластическая деформация.

Упругость - способность тел мгновенно восстанавливать свою первоначальную форму или объем после прекращения действия деформирующих сил. Применяется этот показатель при определении упругости теста, клейковины пшеничного теста, хлебных изделий и других товаров. Этим свойством характеризуются такие товары, как, например, резиновые надувные изделия (шины, игрушки и т. п.).

Эластичность - свойство тел постепенно восстанавливать форму или объем в течение некоторого времени после прекращения действия деформирующих сил.

Это свойство также используется при оценке качества хлеба (состояние мякиша), мяса и рыбы, клейковины теста. Так, эластичность мякиша хлеба, мяса и рыбы служит показателем их свежести, так как при черствении мякиш утрачивает эластичность; при перезревании мяса и рыбы или их порче мышечная ткань сильно размягчается и также утрачивает эластичность.

Пластичность - способность объекта к необратимым деформациям, вследствие чего изменяется первоначальная форма, а после прекращения внешнего воздействия сохраняется новая форма. Типичным примером пластичных материалов служат пластилин. Пластичность пищевого сырья и полуфабрикатов используется при формовании готовых изделий. Так, благодаря пластичности пшеничного теста можно придавать определенную форму хлебобулочным, мучным кондитерским, бараночным и макаронным изделиям. Пластичностью обладают горячие карамельные, конфетные, шоколадные и мармеладные массы. После выпечки и остывания готовые изделия утрачивают пластичность, приобретая новые свойства (эластичность, твердость и т. п.).

При перевозке, хранении и реализации продукции следует учитывать ее способность к деформации и зависимость ее от механических нагрузок и температуры товара.Так, пищевые жиры, маргариновая продукция, коровье масло, хлеб при низких температурах обладают относительно высокой прочностью, а при повышенных температурах - пластичностью. Поэтому перевозка, например, горячего (неостывшего) хлеба может привести к деформированию изделий и увеличению процента санитарного брака.

Следует отметить, что тел, способных только к обратимым или необратимым деформациям, практически нет. В каждом материале или товаре проявляются различные виды деформаций, но одним в большей степени присущи обратимые деформации, упругость, эластичность, а другим - пластичные. Упругие деформации наиболее присущи товарам, имеющим кристаллическую структуру, эластичные - товарам, состоящим из высокомолекулярных органических соединений (белки, крахмал и т. п.), пластичные - товарам, обладающим слабыми связями между отдельными частицами.

Принципиальные различия между упругими, эластичными и пластичными деформациями заключаются в структурных изменениях, происходящих под воздействием внешней силы. При упругих и эластичных деформациях изменяется расстояние между частицами, а при пластичных - их взаимное расположение.

В результате длительного внешнего воздействия упругая деформация может переходить в пластическую. Этот переход связан с релаксацией - падением напряжения внутри материала при постоянной начальной деформации.

Примером может служить деформация плодов и овощей под воздействием силы тяжести верхних слоев, свежевыпеченного хлеба при ударах или давлении. При этом товар может частично или полностью утрачивать способность восстанавливать свою форму вследствие изменения взаимного расположения частиц.

Вязкость (внутреннее трение) - способность жидкости оказывать сопротивление перемещению одной ее части относительно другой под действием внешней силы.

Вязкость жидких товаров определяется с помощью прибора вискозиметра. Применяется вязкость для оценки качества товаров с жидкой и вязкой консистенцией (сиропов, экстрактов, меда, растительных масел, соков, спиртных напитков и т. п.). Вязкость зависит от химического состава (содержания воды, сухих веществ, жира) и температуры товара. При повышении содержания воды и жира, а также температуры снижается вязкость сырья, полуфабрикатов и готовых изделий, что облегчает их приготовление, вязкость возрастает с увеличением концентрации растворов, степени их дисперсности.

Вязкость косвенно свидетельствует о качестве жидких и вязких продуктов, характеризует степень их готовности при переработке сырья, влияет на потери при их перемещении из одного вида тары в другой.

Липкость (адгезия) - способность продуктов проявлять силы взаимодействия с другим продуктом или с поверхностью тары, в которой находится продукт. Этот показатель тесно связан с пластичностью, вязкостью пищевых продуктов. Адгезия характерна для таких пищевых продуктов, как сыр, сливочное масло, мясной фарш и др. Они прилипают к лезвию ножа при разрезании, к зубам при разжевывании. Липкость продуктов определяют с целью управления этим свойством в процессе производства и хранения товаров.

Ползучесть - свойство материала непрерывно деформироваться под воздействием постоянной нагрузки. Это свойство характерно для сыров, мороженого, коровьего масла, мармелада и др. В пищевых продуктах ползучесть проявляется очень быстро, с чем приходится считаться при их обработке в хранении.

Тиксотропия - способность некоторых дисперсных систем самопроизвольно восстанавливать структуру, разрушенную механическим воздействием. Она обнаружена у многих полуфабрикатов и продуктов пищевой промышленности и общественного питания, например, у студней.

  • III.2.1) Понятие преступления, его основные характеристики.
  • U–образные и рабочие характеристики синхронного двигателя
  • Для липкого, «затяжистого» песочного теста с повышенной влажностью (35,5 % вместо 19 %) получены заниженные значе­ния структурно-механических характеристик: модуль упругости 7,6 103 Па, вязкость 6,5 105 Па с.

    Таким образом, из полученных данных следует, что о качест­ве полуфабрикатов теста можно судить по их структурно-меха­ническим свойствам.

    Для изделий из ржаного теста особое значение наряду с дру­гими имеют реологические свойства. Структура теста и качество готовых изделий зависят от особенностей белково-углеводного состава ржаной муки. Для ржаного теста характерны отсутствие губчатого клейковинного каркаса и наличие жидкой фазы, осно­ву которой составляют пептизированный белок, слизи, раство­римые декстрины, сахара, ограниченно набухающая часть бел­ков, отрубянистых частиц.

    Н. А. Акимова и Е. Я. Троицкая проводили реологические исследования с применением методов математического моде­лирования, целью которых были нахождение оптимальной кон­центрации компонентов, входящих в рецептуру (в том числе яблочного пюре), определение лучшего соотношения между ними, описание характера течения ржаного теста с помощью математических уравнений, а следовательно, выявление качест­ва модельных и контрольных образцов и установление оптимальных структурно-механических показателей исследуемого полуфабриката теста.

    Исследования проводили с помощью ротационного вискози­метра «Reotest-2» при температуре 20 0 С. В процессе экспери­мента, учитывая характер исследуемого теста, были подобраны рабочие диапазоны измерений в рамках имеющихся режимных параметров и найдены значения показателей (вязкость, предель­ное напряжение сдвига), определены уравнения течения теста.

    Исследование структурно-механических показателей теста приведено на рис. 13.8 и 13.9.

    Рис. 13.8. Зависимость эффективной вязкости модельных рецептур теста от градиента скорости:



    1 - образец с содержанием яблочного компонента 5 %;

    2- образец с содержанием яблочного компонента 15 %;

    3 - образец с содержанием яблочного компонента 25 %

    Из рис. 13.8 отчетливо видно влияние яблочного компонента на структурно-механические свойства теста, при введении до­полнительного количества которого наблюдается резкое сниже­ние его вязкости; в режиме скоростей сдвига 0,33... 16,2 с -1 эта величина находится в пределах 0,928...0,029 мПа-с. И, наоборот, при уменьшенном количестве измельченных яблок в структуре теста вязкость возрастает с 0,083 до 1,940 мПа-с.

    Рис. 13.9. Зависимость эффективной вязкости теста от градиента скорости:

    1 - контрольный образец; 2 - оптимальный образец

    При обработке полученных данных на компьютере был про­веден регрессионный анализ найденных зависимостей, который показал, что среди математических моделей (линейной, степенной, гиперболической, экспоненциальной) с наибольшей долей достоверности происходящие процессы можно описать степен­ными уравнениями. Коэффициенты корреляции для исследо­ванных модельных образцов были соответственно r 1 = -0,9859, r 2 = -0,9928, r 3 = -0,9840.



    Найденные степенные зависимости η = f(γ), описывающие характер течения модельных образцов теста, показали, что ис­следуемые объекты относятся к вязкопластическим структурам, которые подчиняются следующим уравнениям течения:

    η 1 = 6,737γ -0 .766 ; η 2 = 6,590γ -0 .791 ; η 3 = 6,013γ -0 .828 .

    Характер течения модельных образцов 1 и 3 отличается от характера течения образца 2. Оптимальная кривая зависимости вязкости от скорости сдвига (образец 2) находится между двумя модельными образцами, его вязкость изменяется в пределах 1,771...0,062 мПа*с.

    Недостатки образца 1 - плотная, неоднородная консистен­ция, немного крошливая, быстро образуется «заветренная» ко­рочка, у образца 3 - растекающаяся, неплотная консистенция, заметны вкрапления непромешанных компонентов; изделия при формовании плохо сохраняют форму, рисунок не сохраняется.

    При введении фруктовых добавок в сахарожировую яичную массу в тесте происходит разжижение структуры в результате от­носительного увеличения дисперсионной среды.

    В этом случае можно говорить о том, что при введении фрукто­вых добавок совместно с яйцами в жировую массу образуется сис­тема с пониженной подвижностью воды, в связи с чем уменьшает­ся адсорбция влаги белками муки при последующем замесе теста.

    Изменение прочностных свойств теста при введении в него дополнительного количества яблочного компонента имеет степенной характер. Уменьшение эффективной вязкости теста по мере увеличения содержания в нем количества яблочного ком­понента свидетельствует о разжижении его структуры. Это явле­ние можно объяснить ослаблением системы по мере увеличения содержания в ней воды.

    При выборе оптимальной из исследуемых моделей теста учи­тывали не только реологические, но и другие показатели, входя­щие в комплексный показатель качества, а также органолептические свойства выпеченных изделий.

    График, изображенный на рис. 13.9, показывает, что в адек­ватно описывающих процесс уравнениях течения, приведенных ниже, структура исследуемых путем сравнения контрольного и оптимального образцов разрушается различными темпами:

    Коэффициенты корреляции при этом r контр = -0,981, r опт = -0,985.

    Установлен темп разрушения структуры, который составляет m контр = 2,163, что значительно больше, чем m опт = 1,791.

    Вязкость контрольного образца теста находится в пределах 2,27...0,043 мПа-с. Образец теста разработанной рецептуры имеет менее вязкую консистенцию, чем контрольный, что объ­ясняется введением в рецептуру растительных жиров, а также углеводов и воды, содержащейся в яблоках. Кроме того, более низкие значения вязкости полученного теста могут быть объ­яснены заменой пшеничной муки ржаной.

    Таким образом, проведенные исследования позволили с по­мощью методов математического моделирования уточнить опти­мальную рецептуру принципиально нового полуфабриката теста из ржаной муки, всесторонне исследовать его структурно-меха­нические свойства и получить степенные уравнения течения изу­чаемого теста как вязкопластичного теста, а также в дальнейшем дать всестороннюю комплексную оценку качества как получен­ного полуфабриката теста, так и широкого ассортимента готовых изделий из него.

    Под действием высоких температур (выпечка, пассерование) высокомолекулярные вещества муки претерпевают глубокие фи­зико-химические изменения. Эти изменения сводятся к тепло­вой денатурации белковых веществ клейковины, теряющих спо­собность к растяжению и деструкционным изменениям крахма­ла. Об изменении белков под влиянием различных температур нагревания можно судить по характеру кривых деформаций сдвига, полученных для мучного небродящего теста из муки, предварительно нагретой до различных температур (по данным Л. В. Бабиченко) (рис. 13.10).

    Рис. 13.10. Кривые деформации сдвига теста из муки воздушно-сухой и прогретой до различных

    температур (в скобках влажность)

    Характер кривых для образцов теста из воздушно-сухой муки, нагретой до 65, 105 и 120 0 С, свидетельствует о достаточно мед­ленном развитии высокоэластической деформации и течении с убывающей скоростью, при этом разгруженная система харак­теризуется высоким значением упругого последействия. Повы­шение температуры нагрева муки сопровождается снижением эластичности теста. Особенно резкие изменения кривых наблю­даются для теста из муки, нагретой до 130 °С и выше. Они пока­зывают быстрое развитие упругих деформаций (величины моду­лей сдвига и вязкости теста влажностью 45 % приведены в табл. 13.7).

    Как видно из таблицы, при повышении температуры нагрева муки возрастает величина модуля сдвига теста. Для теста из муки, нагретой до 150 0 С, она почти в 30 раз больше, чем для теста из ненагретой муки.