Портал о ремонте ванной комнаты. Полезные советы

Измерение lc. Компактный многофункциональный прибор - измеритель L, C, ESR, пробник-генератор сигналов

Буквой C. Вот отсюда и пошло название прибора. Или иными словами, LC-метр – это прибор для измерения значений индуктивности и емкости.

На фото он выглядит примерно вот так:

LC-метр на вид напоминает . Он также имеет два щупа для измерения значений катушки индуктивности и емкости. Выводы конденсаторов можно пихать либо в отверстия для конденсаторов, там где написано Cx, а можно и напрямую к щупам. Проще и быстрее все-таки подсоединять к щупам. Индуктивность и емкость измеряются очень просто, выставляем предел измерения, покрутив крутилку, и смотрим обозначение на дисплее LC-метра . Как говорится, даже маленький ребенок без труда освоит эту “игрушку”.

Как измерить емкость LC-метром

Вот у нас четыре испытуемых конденсатора. Трое из них – неполярные, а один – полярный (черный с серой полосой)


Погнали


Давайте разберемся с обозначениями на конденсаторе. 0,022 мкФ – это его емкость, то есть 0,022 микрофарад. Далее +-5% – это его погрешность. То есть измеряемое значение может быть на плюс или минус 5% больше или меньше. Если больше или меньше 5 % – значит конденсатор у нас плохой, и его желательно не использовать. Пять процентов от 0,022 – это 0,001. Следовательно, конденсатор можно считать вполне рабочим, если его измеряемая емкость будет находится в диапазоне от 0,021 до 0,023. У нас значение 0,025. Если даже учесть погрешность измерения прибора – это не есть хорошо. Выкидываем его куда подальше. Ах да, обратите внимание на вольты, которые пишутся после процентов. Там написано 200 Вольт – это значит, что он рассчитан на напряжение до 200 Вольт. Если у него в схеме будет на выводах напряжение больше 200 Вольт, то он, скорее всего, выйдет из строя.

Если, например, на конденсаторе указано 220 В, то это – максимальное значение напряжения . С учётом того, что в сетях переменного тока указываются , то такой конденсатор не подойдёт для применения при напряжении сети 220 В, так как максимальное значение напряжения в этой сети = 220 В х 1,4 (то есть корень из 2) = 310 В. Конденсатор надо выбрать такой, чтобы он был рассчитан на напряжение намного превышающее 310 Вольт.

Следующий советский конденсатор


0,47 микрофарад. Погрешность +-10 %. Это значит 0,047 в ту и другую сторону. Его можно считать нормальным в диапазоне 0,423-0,517микроФарад. На LC-метре 0,489 – следовательно, он вполне работоспособный.

Следующий импортный конденсатор


На нем написано,22 – это значит 0,22 микрофарад. 160 – это предел напряжения. Вполне нормальный конденсатор.

И следующий электролитический или, как его называют радиолюбители, электролит. 2,2 микрофарада на 50 Вольт.



Все ОК!

Как измерить индуктивность LC-метром

Давайте замеряем индуктивность катушки индуктивности . Берем катушку и цепляемся к ее выводам. 0,029 миллигенри или 29 микрогенри.


Таким же образом можно проверить другие катушки индуктивности.

Где купить LC-метр

В настоящее время прогресс дошел до того, что можно купить универсальный R/L/C/Transistor-metr , который умеет замерять почти все параметры радиоэлектронных компонентов


Ну для эстетов все таки есть нормальные LC-метры, которые в один клик можно приобрести с Китая в интернет-магазине Алиэкспресс;-)

Вот страничка на LC-метры.

Вывод

Катушки индуктивности и конденсаторы – незаменимая вещь в электронике и электротехнике. Очень важно знать их параметры, потому как малейшее отклонение параметра от значения написанного на них может сильно изменить работу схемы, особенно это касается приемопередающей аппаратуры. Измеряйте, измеряйте и еще раз измеряйте!

Радиолюбитель 2000 №11-12

Хочу предложить измеритель LC с прямым отсчётом. Данный пробник, несмотря на свою простоту, обладает большими возможностями. Он позволяет измерять:

- ёмкость конденсаторов (не выпаивая их из схемы);
- индуктивность;
- частоту сигналов (TTL-уровня);
- тангенс угла и сопротивление потерь конденсаторов;
- магнитную проницаемость сердечников;
- добротность катушек индуктивности;
- наличие короткозамкнутых витков в катушках. Схема пробника показана на рис.1.

На элементах DD1 и DD2 собран генератор, времязадающим элементом которого является измеряемая ёмкость или индуктивность. На элементах DD3 и DD4 собран делитель частоты с максимальным коэффициентом деления 16777211. Вся шкала пробника включает 25 значений, отличающихся друг от друга в 2 раза. При работе пробника визуально определяется, частота мигания какого светодиода ближе всего к 1 Гц. Показания напротив него и являются результатом измерения. Диод VD2 защищает прибор от переполюсовки питания.

Измерение ёмкости. Перед измерением конденсатор необходимо разрядить. Переключатель S1 поставить в разомкнутое положение (измерение ёмкости). В зависимости от необходимой точности, измерение можно провести тремя способами.

Способ 1. К щупам пробника подключается измеряемый конденсатор (его можно не выпаивать из схемы) и определяется, какой светодиод мигает с частотой около 1 Гц. На шкале против него читается значение ёмкости.

Способ 2. Для более точного измерения ёмкости нужно сделать все как в способе 1, только смотреть на светодиод, который мигает с частотой, большей чем 1 Гц, подсчитать количество миганий за 10 с, и вычислить частоту миганий, разделив подсчитанное количество на 10. Показание напротив этого светодиода разделить на полученную частоту. Результат и будет значением ёмкости конденсатора.

Способ 3. Для ещё более точного определения ёмкости можно воспользоваться осциллографом или частотомером. Причём при использовании осциллографа можно оценить и качество проверяемого конденсатора (определить тангенс угла потерь). Подключив осциллограф или частотомер к щупам пробника, этими же щупами нужно коснуться проверяемого конденсатора. Если конденсатор имеет малые потери, то вид осциллограмы будет такой, как показано на рис.2а. При больших потерях вид осциллограммы будет такой, как на рис.2б. Определите величину периода Т и по формуле (1) подсчитайте ёмкость конденсатора:

С=T/40-5*10 -9 (Ф). (1)

При ремонте радиоаппаратуры достаточно измерить ёмкость конденсатора по способу 1. Если полученное значение ёмкости меньше номинала, указанного на конденсаторе, в 2 и более число раз, такой конденсатор необходимо заменить.

Измерение индуктивности. Индуктивность, так же как и ёмкость, можно измерить тремя способами.

Способ 1. Он аналогичен способу 1 для измерения ёмкостей. Только переключатель S1 нужно замкнуть.

Способ 2. Аналогичен способу 2 для измерения ёмкостей конденсаторов. Переключатель S1 поставить в положение для измерения индуктивности (замкнуть).

Способ 3. Аналогичен способу 3 для измерения ёмкостей. Индуктивность рассчитываем по формуле

L = 40*Т (Гн), (2)

а вид осциллограмм для катушек с малыми и большими потерями приведён на рис.За и 3б соответственно. Значения ёмкостей конденсаторов и индуктивностей катушек с потерями, определённые с помощью пробника, будут содержать погрешность - тем большую, чем больше эти потери.

Измерение частоты сигнала. Пробник позволяет измерять частоту сигнала ТТЛ-уровня, при условии, что питание пробника гальванически развязано от питания проверяемой цепи. Переключатель S1 необходимо поставить в положение для измерения индуктивности. Одним щупом коснитесь общего провода, а другим - источника сигнала. Напротив светодиода, мигающего с частотой около 1 Гц, прочитайте показания частоты сигнала. Для более точного определения частоты можно воспользоваться способом 2.

Определение тангенса угла потерь конденсаторов. Тангенс угла потерь (tg d) точно можно определить с использованием осциллографа.

Способ 1. Для этого необходимо подключить к щупам пробника осциллограф и проверяемый конденсатор. Если осциллограмма выглядит как на рис.2б, конденсатор имеет потери, величину которых можно вычислить. Конденсатор с потерями можно заменить эквивалентной схемой - последовательно соединёнными конденсатором и сопротивлением потерь. Тогда тангенс угла потерь равен:

tg d = R п /X c = R п /(2*pi*f*C), (3)

где Rп - сопротивление потерь (Ом);
Хc - реактивное сопротивление конденсатора (Ом);
f - частота, на которой работает конденсатор (Гц);
C - ёмкость конденсатора (Ф).

Для данного пробника:

R п = U п /0,03 (Ом). (4)

U п - измеряется по осциллографу, согласно рис.2б. При подключении к пробнику конденсатора, период Т, с учётом сопротивления потерь R п, равен:

T = 3,33*(12-R п)*(C + 5*10 -9) (c) (5)

Если в данную формулу подставить R п =0, то получается формула (1).

Способ 2. Измерьте ёмкость конденсатора с помощью пробника. Если пробник показал ёмкость в 2 или более число раз меньшую, чем номинал конденсатора (обозначенный на нем), данный конденсатор имеет большое сопротивление потерь R п, а соответственно, и большой tg d. Тогда, согласно формуле (5), можно найти сопротивление потерь. Результаты расчёта сведены в таблицу.

В верхней строке таблицы - кратность показаний пробника (во сколько раз ёмкость конденсатора меньше ёмкости, обозначенной на корпусе конденсатора. В нижней строке - соответствующее сопротивление потерь.

Определение добротности катушек индуктивности. Определите индуктивность катушки L1. Омметром (желательно цифровым) измерьте активное сопротивление катушки R. Подсчитайте реактивное сопротивление на заданной частоте.

X L = 2*pi*f*L (Ом), (6)

где X L - реактивное сопротивление катушки (Ом);
f - рабочая частота (Гц);
L - индуктивность катушки (Гн).

Добротность катушки индуктивности рассчитывается по формуле;

На данном пробнике показания заметны при Q>11.

Определение магнитной проницаемости сердечника из феррита. Рассмотрим три вида сердечников (рис.4). Рассчитаем величины, необходимые для определения магнитной проницаемости сердечников.

l М =(D + d)*pi/2 (9)

S М =(D - d)*h/2 (10)

l М =2*(А+В-2*С) (11)

l М =2*(h+а+с)+3/2*а (13)

Формулы (9) и (10) используются для кольца, (11) и (12) - для П-образного, а (13) и (14) - для Ш-образного сердечника. Все размеры в формулах (9)...(14) берутся в сантиметрах.

Намотайте не менее 15 витков провода (внавал) на сердечник и измерьте пробником полученную индуктивность, (для Ш-образного сердечника витки нужно мотать по размеру а). Эффективная магнитная проницаемость сердечника рассчитывается по формуле

u э =(L*l М)/(u 0 *n 2 *S М) (15)

где L - индуктивность катушки, намотанной на данный сердечник (Гн);
l м - длина средней магнитной силовой линии (см);
S M - площадь сечения магнитопровода (см 2);
u 0 - магнитная проницаемость вакуума (u 0 =4*pi*10 -9 Гн/см);
n - количество витков.

Выявление короткозамкнутых витков. Для определения наличия короткозамкнутых витков в катушках, намотанных на кольцеобразных, П-образных и Ш-образных сердечниках, необходимо сравнить индуктивность, измеренную пробником, и расчётную:

L=u 0 *u э *n 2 *S м /l м, (16)

где u э - эффективная магнитная проницаемость для ферритовых материалов (указывается на них). Если она неизвестна, её можно определить так, как описано выше.

Если индуктивность, определённая пробником, меньше в 2 и более раз, чем расчётная, то в катушке имеются короткозамкнутые витки.

Детали. Формулы (1, 2, 4, 5) верны только для пробника, собранного на микросхемах 74НС00. Если генератор пробника собрать на микросхемах других серий, в том числе и отечественных, в формулах появятся поправочные коэффициенты. При выборе микросхем нужно помнить, что:

Размах напряжения на щупах пробника не должен превышать 0,3...0,4 В, чтобы не открывались р-n переходы не только кремниевых, но и германиевых транзисторов и диодов. Это позволяет проверять конденсаторы, не выпаивая их из плат;

ИМС должны быть достаточно быстродействующими (шире диапазон измерения);

При использовании некоторых серий необходимо подключить конденсатор С6 1000 пФ...0,01 мкФ (рис.1) для устойчивого запуска генератора. Это резко сужает диапазон измерений.

Автором были проверены микросхемы серий К155, К555, К531, К131, КР1533, 7400, 74LS00, 74НС00. Всем требованиям больше всего отвечала микросхема КР1533ЛАЗ. У неё размах напряжения на щупах был около 0,02 В. Но из-за этого она оказалась слишком чувствительной к помехам и наводкам от рук. Приходилось применять специальные меры, которые резко снижали диапазон измерений. ИМС К155ЛАЗ имела большой размах напряжения, что открывало р-n переходы даже кремниевых транзисторов и диодов. К555ЛАЗ открывала р-п переходы только германиевых транзисторов и диодов. Так что из этих серий лучше всего использовать микросхему 74НСОО. Она малочувствительна к помехам и наводкам от рук, не открывает р-п переходы даже германиевых транзисторов и диодов. К тому же, имеет малое потребление энергии.

Для счётчиков также лучше использовать микросхемы серии CD74HCT4040, т.к. они достаточно высокочастотны, имеют выходной ток, достаточный для хорошего свечения светодиодов, мало потребляют энергии. Напряжение питания должно быть стабилизированным. Оно выбрано 4,4 В. При выборе напряжения питания необходимо помнить, что его изменение приводит к изменению коэффициентов в формулах (1, 2, 4, 5), а следовательно, влияет на показания пробника. Изменяя Un, можно изменить диапазон измеряемых величин в ту или иную сторону. Изменение напряжения питания также влияет на чувствительность пробника к конденсаторам с потерями. Если его уменьшать, чувствительность падает, увеличивать - растёт.

Светодиоды в пробнике - любые, красного свечения. Их все можно не устанавливать, а установить, например, через один. Правда, шаг шкалы при этом увеличится.

Настройка. Пробник размещён на плате размером 105x30 мм. Шкала пробника рассчитана по формулам 1 и 2 и соответствует действительности только при использовании микросхемы 74НСОО и напряжения питания 4,3 В. Микросхему DD2 желательно установить в панельку, т.к. если случайно коснуться пробником неразряженного конденсатора, находящегося под большим напряжением, микросхема может сгореть. Поэтому нужно обязательно разряжать конденсаторы перед измерением.

Щупы пробника должны иметь минимальную длину, т.к. на его работоспособность влияет даже очень маленькая индуктивность щупов. В авторском варианте длина одного щупа (вместе с кабелем) - 22 см, а другого - 10 см.

С.Володько, г.Гомель.

Самодельные измерительные приборы

Радиоконструктор 1999 №1

Прибор предназначен для использования в радиолюбительской практике, он даёт возможность измерять ёмкости конденсаторов в пределах 10 пф - 10мкф, индуктивности катушек и дросселей в пределах 10 мкГн -1 Гн. Погрешность измерения не превышает 4%, отображение результатов на шкале микроамперметра на 100 мкА.

Принципиальная схема показана на рисунке. На микросхемах выполнен генератор прямоугольных импульсов, частоту которых можно изменять ступенчато при помощи переключателя S1. Далее следует измерительный мост с микроамперметром на выходе. Катушки и конденсаторы подключаются, соответственно к разъёмам "L" и "С" Питается прибор от сетевого источника на силовом трансформаторе Т1, диодном выпрямителе на VD6-VD9 и стабилизаторе на VT1.

При подборе деталей можно взять, практически любые десятичные счётчики КМОП или МОП, например К561ИЕ14 или К176ИЕ4 и включить их последовательно по схеме декадного делителя. Нужно учитывать, что для микросхем К176 нужно повысить напряжение питания до 9-10В заменив стабилитрон КС156 на Д818, КС210. Вообще, для питания микросхем К561 можно выбрать напряжение от 5-ти до 15-ти вольт, соответственно и стабилитрон можно выбрать на это напряжение. Диоды Д9 можно заменить на Д18, Д20 или, что лучше на ГД507. КД522 - любые кремниевые импульсные.

Андрей Барышев, г. Выборг

Этот прибор можно собрать в небольшом корпусе, например от китайского цифрового тестера. Он позволяет измерять емкости от 10 пикофарад до 1 микрофарады, индуктивности от 100 мкГн до 1 Гн, эквивалентное последовательное сопротивление (ESR) электролитических конденсаторов, выдает пять фиксированных частот (100 Гц, 1 кГц, 10 кГц, 100 кГц, 1 МГц) с амплитудой, регулируемой от 0 до 4…5 В. Кроме того, с его помощью можно проверить катушки индуктивности на отсутствие короткозамкнутых витков и измерить эквивалентное последовательное сопротивление (ESR) конденсаторов, не выпаивая их из плат, что позволяет за считанные минуты проверить, например, конденсаторы импульсного блока питания или телевизора, где именно показатель ESR имеет определяющее значение.

Схема прибора приведена на Рисунке 1.

Рисунок 1.

В основу работы прибора заложен принцип измерения постоянной составляющей сигнала генератора. На измерительную головку поступает постоянное напряжение, зависящее от величины измеряемой индуктивности или емкости. Чем больше номинал измеряемого элемента, тем на больший угол отклонится стрелка.

Широкополосный перестраиваемый генератор собран на цифровой микросхеме DD1, содержащей четыре логических элемента И-НЕ (можно ИЛИ-НЕ). В качестве такой микросхемы применимы, например, К561ЛА7 , К564ЛА7, К176ЛА7 (или с элементами ИЛИ-НЕ, например, К561ЛЕ5), питающее напряжение которых лежит в пределах 5..9 В. Переключением конденсаторов С1 - С5 задается частота генератора и предел измерения номинала емкости или индуктивности. Эти конденсаторы должны быть бумажными или, что лучше, металлопленочными (К71, К73, К77, К78). Далее через электронный ключ на транзисторе VТ1 сигнал генератора поступает на переключатель вида измерений S2 - «L/C» или «ЕSR». Переключателем S3 выбирается режим измерения индуктивности или емкости, также в режиме измерения емкости можно снимать с гнезда «F» пять вышеуказанных фиксированных частот, а резистором P2 регулировать выходное напряжение сигнала от 0 до 4 … 5 В.

При показанном на схеме положении переключателей S1 и S2 прибор работает в режиме измерения индуктивности.

На транзисторе VТ2 собран параметрический стабилизатор напряжения, что необходимо для стабильности генерируемой частоты и, следовательно, точности измерений. Выходное напряжение стабилизатора определяется типом стабилитрона VD1 и может лежать в пределах от 4.5 до 7.5 В (стабилитроны типа КС147, КС156, КС162, КС168, Д814А или другие с теми же напряжениями стабилизации). Для лучшей стабилизации напряжения и, соответственно, большей точности измерений желательно использовать стабилитроны типа КС с напряжением, близким к 6 В (КС156, КС162), так как они обладают лучшей термостабильностью параметров.

При измерениях конденсаторы подключаются к гнездам «Сх» и «Общ. Сх/Lx», индуктивности, соответственно, к «Lx» и «Общ. Cx/Lx». Гнездо «Lx» является также общим гнездом (GND) для генератора фиксированных частот и для измерения ESR электролитических конденсаторов. В качестве этих гнезд можно использовать уже установленные в корпусе тестера (если для данного прибора будет использоваться такой корпус). Нужно будет только добавить гнездо выхода генератора «F» аналогичного типа. В качестве переключателей S1, S2 и S3 можно применить любые подходящие на нужное количество контактов, например широко распространенные в свое время П2К или аналогичные импортные, а для переключения частоты генератора (коммутация конденсаторов С1 - С5) удобно использовать малогабаритные переключатели галетного типа (пример такого переключателя показан на Рисунке 2).

Диоды D1, D2 и D3 - германиевые, типа Д2, Д9, Д18, Д310, Д311, ГД507. В качестве измерительного прибора можно применить микроамперметр, например, стрелочный индикатор уровня записи от старого магнитофона или измерительную головку от небольшого стрелочного тестера.

Настройка измерителя С и L производится при помощи частотомера и вольтметра (можно использовать любой программный частотомер в компьютере). Переключатель S3 ставится в положение «С», а диапазон измерений (S1) - «1Гн/1мФ/100Гц». Частотомер подключают к гнездам «F» и «GND», и регулировкой резистора P1 6.8 кОм выставляется частота 100 Гц. Далее диапазон измерений переключается в положения 1 кГц, 10 кГц, 100 кГц, 1 МГц и подбором соответствующих конденсаторов С1 - С5 выставляются эти частоты. От точности подбора конденсаторов будет в дальнейшем зависеть и точность измерений прибора. При наличии осциллографа будет полезно посмотреть форму сигнала генератора на коллекторе транзистора VТ1. Подбором резистора R2 можно добиться формы сигнала, близкой к меандру на всех диапазонах измерений. После этого снова следует включить диапазон«1Гн/1мФ/100Гц», а к гнездам «Сх» подключить образцовый конденсатор емкостью 1 мФ. Подстроечным резистором VR2 следует установить отклонение стрелки прибора в конец шкалы. Далее подключаем емкости 0.1, 0.2, 0.3 … 0.9 мкФ и ставим на шкале прибора соответствующие метки (такие емкости можно составить из параллельно включенных конденсаторов номиналом по 0.1 мФ). Затем аналогичным образом подключаем к гнездам «Lx» образцовую катушку индуктивности 1 Гн и подстроечным резистором VR1 также выставляем стрелку прибора в конец шкалы. Надо заметить, что с наличием нужных для калибровки индуктивностей у меня лично дело обстоит сложнее, чем с конденсаторами, поэтому за несколько лет благополучного пользования прибором этот режим измерений так и не отградуирован (что можно видеть на фото). Но даже при не совсем точной калибровке шкалы прибор позволяет, тем не менее, с довольно высокой точностью подбирать парные элементы с одинаковыми или очень близкими номиналами.

При переключении в режим измерения «ESR» (переключатель S2) сигнал генератора поступает на обмотку трансформатора Tr1 через подстроечный резистор VR3. При этом также происходит перекоммутация измерительной головки. Частота, при которой измеряется эквивалентное последовательное сопротивление электролитических конденсаторов, составляет 100 кГц. Поэтому следует выставить соответствующий диапазон измерений («1мГ/1000пФ/100кГц/ESR») и поставить переключатель S3 в режим измерения «С».

Эта часть прибора в особой настройке не нуждается, следует просто выставить стрелку прибора в конец шкалы подстроечным резистором VR3 при разомкнутых входных контактах «ESR». Для градуировки используем резисторы 0.5, 2, 5 и 10 Ом. Подключаем их поочередно к контактам «ESR» и делаем на шкале соответствующие метки. Ниже приведены значения «нормальных» сопротивлений (ESR) для конденсаторов различных номиналов:

  • 1 … 100 мкФ - не более 5 Ом;
  • 100 … 1000 мкФ - не более 2.5 Ом;
  • 1000 … 10,000 мкФ - не более 1 Ом.

(Следует заметить, что для очень малогабаритных конденсаторов и для конденсаторов номиналом 4.7 мкФ × 200 В сопротивление 5 Ом является нормальным).

В измерителе ESR использованы также германиевый диод D3 и шунтирующие измерительную головку диоды D4 и D5 типа КД521 (КД522), защищающие измерительную головку от напряжения разряда конденсатора в том случае, если он стоит на плате и не разряжен. Тем не менее, следует обязательно закоротить выводы проверяемого конденсатора перед его проверкой, чтобы он полностью разрядился! Особенно это касается конденсаторов на высокие напряжения и большой емкости, поскольку разрядный ток у них достаточно велик для того, чтобы сжечь и диоды и головку.

Трансформатор намотан на ферритовом кольце внешним диаметром 10 … 15 мм, значение магнитной проницаемости и размер некритичны. Можно использовать кольца от дросселей материнской платы компьютера, маломощных импульсных блоков питания и т.д. Первичная обмотка (к которой подключается проверяемый конденсатор) имеет 10 витков провода ПЭВ-0.4…0.5, вторичная (к которой подключается измерительный прибор) - 200 витков ПЭВ-0.1 …0.15. В зависимости от применяемого стрелочного прибора и тока полного отклонения его стрелки, может потребоваться корректировка количества витков первичной обмотки (если не удастся выставить стрелку в конец шкалы подстроечным резистором VR3), поэтому сначала лучше наматывать вторичную обмотку, а поверх нее - первичную.

Прибором можно также проверить катушку индуктивности или, например, трансформатор на наличие короткозамкнутых витков. Для этого ее подключают к гнездам «ESR». Катушки малой индуктивности проверяют, как и электролитические конденсаторы, при частоте 100 кГц, а большие - при частоте 1 кГц. У нормальной катушки высокое реактивное сопротивление, и стрелка останется в конце шкалы. При наличии же короткозамкнутых витков сопротивление резко уменьшается, и прибор покажет сопротивление в единицы Ом.

Питать прибор можно от батареи типа «Крона» или от сетевого адаптера с напряжением холостого хода (без нагрузки) от 9 до 18 В. При нормальных, исправных деталях ток, потребляемый прибором, не превышает 7-9 мА. К гнездам прибора подключаются измерительные щупы с зажимами «крокодил», провода для щупов следует использовать диаметром 0.7 … 1 мм и как можно меньшей длины, чтобы они не вносили значительной погрешности при измерениях.

Вместо измерительной головки (микроамперметра) можно, конечно, использовать обычный тестер в режиме измерения напряжений 1-2 В. Тогда при настройке нужно будет выставить подстроечными резисторами «L», «C» и «ESR» значение 1 В. Однако применение стрелочного индикатора предпочтительнее, так как шкала измерений нелинейна. Погрешность измерений прибора зависит исключительно от качества применяемых деталей и точности их подбора/настройки.

Конструкция

Внешний вид прибора показан на Рисунке 3. Печатная плата разрабатывалась под конкретные переключатели и корпус и здесь не приводится. (Корпуса такого размера и формы вряд ли сейчас можно найти). Деталей немного, и монтаж легко можно сделать навесным способом, прямо на контактах переключателей и переменных резисторов.

Для комментирования материалов с сайта и получения полного доступа к нашему форуму Вам необходимо зарегистрироваться .

Рассмотрена схема измерителя емкости конденсаторов и индуктивности катушек, выполненная всего на пяти транзисторах и, несмотря на свою простоту и доступность, позволяет в большом диапазоне определять с приемлемой точностью емкость и индуктивность катушек. Имеется четыре поддиапазона для конденсаторов и целых пять поддиапазонов катушек. После достаточно простой процедуры калибровки, с применением двух подстроечных сопротивлений, максимальная погрешность будет около 3%, что согласитесь, для радиолюбительской самоделки совсем не плохо.

Предлагаю спаять своими руками эту простую схему LC-метра. Основой радиолюбительской самоделки служит генератор, выполненный на VT1, VT2 и радиокомпонентах обвязки. Его рабочая частота определяется параметрами LC колебательного контура, который состоит из неизвестной емкости конденсатора Cx и параллельно подключенной катушки L1, в режиме определения неизвестной емкости - контакты X1 и X2 должны быть замкнуты, а в режиме измерения индуктивности Lx, она подключается последовательно с катушкой L1 и параллельно соединенному конденсатору C1.

С подключением к LC-метру неизвестного элемента, начинает работать генератор на какой-то частоте, которая фиксируется очень простым частотомером, собранным на транзисторах VT3 и VT4. Затем значение частоты преобразуется в постоянный ток, который отклоняет стрелку микроамперметра.

Измеритель индуктивности сборка схемы. Соединительные провода рекомендуется делать по возможности максимально короткими для подключения неизвестных элементов. После окончания процесса общей сборки необходимо откалибровать конструкцию во всех диапазонах.

Калибровка осуществляется с помощью подбора сопротивлений подстроечных резисторов R12 и R15 при подключении к измерительным выводам радиоэлементов с заранее известными номиналами. Так как в одном диапазоне номинал подстроечных резисторов будет один, а в другом он будет другой, то необходимо определить нечто среднее для всех диапазонов, при этом погрешность измерения не должна выйти за 3%.

Этот достаточно точный LC метр собран на микроконтроллере PIC16F628A. В основе конструкции LC метра лежит частотомер с LC осциллятором, частота которого изменяется в зависимости от измеряемых величин индуктивности или емкости, и в результате вычисляется. Точность частоты доходит до 1 Гц.

Реле RL1 необходимо для выбора L или C режима измерения. Счетчик работает на основе математических уравнений. Для обоих неизвестных L и C , уравнения 1 и 2 являются общими.


Калибровка

При включении питания осуществляется автоматическая калибровка прибора. Начальный рабочий режим - индуктивность. Подождите пару минут для прогрева цепей устройства, затем нажмите тумблер "zero", для повторной калибровки. Дисплей должен вывести значения ind = 0.00 . Теперь подсоедините тестовый номинал индуктивности, например 10uH или 100uH. LC-метр должен вывести на экран точное значение. Для настройки счетчика имеются перемычки Jp1 ~ Jp4 .

Представленный ниже проект измерителя индуктивности очень прост для повторения состоит из минимума радиокомпонентов. Диапазоны измерения индуктивности : - 10нГ - 1000нГ; 1мкГ - 1000мкГ; 1мГ - 100мГ. Диапазоны измерения емкости: - 0.1пФ - 1000пФ - 1нФ - 900нФ

Измерительное устройство поддерживает автокалибровку при включении питания, что исключает вероятность человеческого фактора при ручной калибровке. Абсолютно, в любой момент можно заново откалибровать измеритель, просто нажав кнопку сброса. В приборе имеется автоматический выбор диапазона измерений.

В конструкции устройства нет необходимости использования каких-либо прецизионных и дорогих радио компонентов. Единственное, нужно иметь одну "внешнюю" емкость, номинал которой известен с большой точностью. Два конденсатора емкостью в 1000 пФ должны быть нормальногно качества, желательно использовать полистирольные, а две емкости по 10 мкФ должны быть танталовыми.


Кварц нужно взять точно на 4.000 МГц. Каждый 1% несоответствия частоты, приведет к 2% ошибке измерения. Реле с малым током катушки, т.к. микроконтроллер не способен обеспечить ток выше 30 мА. Не забудьте параллельно катушке реле для подавления обратного тока и исключения дребезга поставить диод.

Печатная плата и прошивка микроконтроллера по ссылке выше.