Портал о ремонте ванной комнаты. Полезные советы

Типы, виды, категории, классификация. Конденсатор электрический

5 .1 Исходные данные

В качестве исходных данных для базовой математической модели НПК мной были задействованы таблицы помесячного изменения параметров установки Т-180/210-130-1 Комсомольской ТЭЦ-3 за 2009 год (таблица 5.1).

Из этих данных были взяты:

§ давление и температура пара перед турбиной;

§ КПД турбины нетто;

§ расход тепла на производство электроэнергии и часовой расход тепла;

§ вакуум в конденсаторе;

§ температура охлаждающей воды на выходе из конденсатора;

§ температурный напор в конденсаторе

§ расход пара в конденсатор.

Использование данных реальной турбоустановки в качестве исходных также можно будет в дальнейшем считать подтверждением адекватности полученной математической модели.

Таблица 5.1- Параметры установки Т-180/210-130 КТЭЦ-3 за 2009 год

Конденсатор

Давление пара перед турбиной, P 1 , МПа

Температура пара перед турбиной, t 1, ºС

КПД нетто, %

Расход тепла на производство электроэнергии, Q э,ͯ10 3 Гккал

Часовой расход тепла, Q ч, Гкал/ч

Вакуум, V, %

Температура охлажд. воды на выходе, ºС

Расход пара, Gп, т/ч

Температурный напор, δ t в , ºС

Сентябрь

5 .2 Базовая математическая модель

Математическая модель НПК отображает основные процессы, протекающие в оборудовании и сооружениях низкопотенциальной части тепловых электростанций. Она включает в себя модели элементов оборудования и сооружений НПК, используемых на реальных ТЭС и предусматриваемых в проектах новых ТЭС.

Основные элементы НПК - турбина, конденсаторы, водоохлаждающие устройства, циркуляционные насосные станции и система циркуляционных водоводов - на практике реализуются в виде целого ряда различных типоразмеров оборудования и сооружений. Каждый из них характеризуется более или менее многочисленными внутренними параметрами, постоянными либо изменяющимися во время эксплуатации, определяющими в конечном итоге степень эффективности работы электростанции в целом.

При использовании на исследуемой ТЭС одного типа водоохладителей количество теплоты, отводимой в охладителях в окружающую среду, однозначно определяется теплотой, передаваемой охлаждающей воде в конденсаторах турбин и вспомогательном оборудовании. Температура охлаждающей воды в этом случае легко вычисляется по характеристике охладителя. Если же используется несколько охладителей, включенных параллельно или последовательно, расчет температуры охлажденной воды существенно усложняется, поскольку температура воды за отдельными охладителями может сильно отличаться от температуры воды после смешения потоков от разных охладителей. В этом случае для определения температуры охлажденной воды необходимо итерационное уточнение температуры воды за каждым из совместно работающих охладителей.

Математические модели водоохладителей позволяют определить как температуру охлажденной воды, так и потери воды в охладителях за счет испарения, капельного уноса и фильтрации в грунт. Восполнение потерь воды производится либо непрерывно, либо в течение некоторой части расчетного периода. Предполагается, что добавочная вода подается в циркуляционный тракт в месте смешения потоков воды от охладителей, при этом учитывается ее влияние на температуру охлаждающей воды.

Самое важное:

Электрический конденсатор может накапливать и отдавать электрическую энергию. При этом через него протекает ток, и изменяется напряжение нем. Напряжение на конденсаторе пропорционально току, который прошел через него за определенный период времени и длительности этого промежутка.

На идеальном конденсаторе не выделяется тепловая энергия.

Если к конденсатору приложить переменное напряжения, то в цепи возникнет электрический ток. Сила этого тока пропорциональна частоте напряжения и емкости конденсатора. Для оценки тока при заданном напряжении вводится понятие реактивного сопротивления конденсатора.

Многообразие видов и типов конденсаторов позволяет выбрать подходящий.

Конденсатор - электронный прибор, предназначенный для накопления и последующей отдачи электрического заряда. Работа конденсатора напрямую связана со временем. Без рассмотрения изменения заряда во времени невозможно описать работу конденсатора.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые.


Как работает обратноходовый стабилизатор напряжения. Где он применяется. Описани...

Транзисторный аналог тиристора (динистора / тринистора). Имитатор, эму...
Схема аналога тиристора (диодного и триодного) на транзисторах. Расчет параметро...

Прямоходовый импульсный стабилизированный преобразователь напряжения, ...
Как работает прямоходовый стабилизатор напряжения. Описание принципа действия. П...

Катушка индуктивности. Изготовление. Намотка. Изготовить. Намотать. Мо...
Изготовление катушки индуктивности. Экранирование обмоток...


Резистор

Математическая модель резистора (рис. 2.1) описывается законом Ома:

U R =IR, или I=gU R , где g=1/R.

В первом случае задано падение напряжения U R на резисторе, а искомая величина – ток I через резистор. Во втором случае задан ток I черезрезистор, а искомая величина – это U R на резисторе.

    номинальное значение сопротивления R Н;

    допуск на сопротивление R;

    температурный коэффициент ТКR.

Допуск R является границей отклонений сопротивления от номинального значения, возникающих в процессе изготовления резисторов:

при этом сопротивления резисторов в процессе их производства могут принимать значения:

Если значение сопротивления R меньше номинального R H , то относительное отклонение R/ R H  0, в противном случае R/ R H  0.

Обычно допуск R задается в процентах.

Температурный коэффициент ТКR задает значение сопротивления для текущего значения температуры Т:

где Т Н номинальное значение температуры, принимаемое равным 27 0 С.

Таким образом, TKRравен относительному отклонению сопротивления от номинального значения при изменении температуры на 1 0 С. Иногда TKR задается в propromil (ppm ) :

TKR ppm = TKR  10 6 .

Конденсатор

Математическая модель конденсатора (рис. 2.2) записывается в виде:

или

В первом случае заданной величиной является падение напряжения U C (t) на конденсаторе, а искомой – ток через конденсатор I(). Во втором случае заданной величиной является ток через конденсатор I(t), а искомой – падение напряжения U C (t).

Параметры математической модели:

    номинальное значение емкости C H ;

    допуск на емкость С;

    температурный коэффициент TKC.

Понятие о допуске и температурном коэффициенте были даны при описании модели резистора.

Катушка индуктивности

Катушка индуктивности (рис. 2.3) описывается двумя математическими моделями:

или

Параметрами математической модели являются L H , L, TKL, содержание которых аналогично рассмотренным для резистора и конденсатора.

Реальные модели резистора, конденсатора, индуктивности сложнее, чем рассмотренные здесь.

Таким образом, модели даже простейших компонентов могут быть достаточно сложными, если требуется высокая степень адекватности параметров физического объекта и его математической модели.

Двухобмоточный трансформатор

Трансформатор (рис. 2.4) может быть представлен в виде следующей математической модели:

где L 1 , L 2 – индуктивности обмоток,

М 12 – взаимоиндуктивность.

Параметрами модели являются значения L 1 , L 2 и коэффициента связи

Значение К СВ лежит в пределах от нуля до единицы. Значение К СВ =1 говорит о наличии жесткой связи между обмотками, что характерно для согласующих и силовых трансформаторов и для выходных трансформаторов усилителей. Значение К СВ <1 говорит о наличии в трансформаторе индуктивности рассеяния, что приводит к уменьшению коэффициента передачи на высоких частотах. Такие трансформаторы используются в резонансных контурах фильтров.

Иногда в качестве параметров задаются:


Кроме перечисленных параметров нужно указать способ включения обмоток - согласный или встречный.

Секция «Моделирование физико-механических и тепловых процессов в машинах и аппаратах»

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ КОНДЕНСАТОРА-ИСПАРИТЕЛЯ ВОЗДУХОРАЗДЕЛИТЕЛЬНОЙ УСТАНОВКИ

В. В. Черненко, Д. В. Черненко

Сибирский государственный аэрокосмический университет имени академика М. Ф. Решетнева

Российская Федерация, 660037, г. Красноярск, просп. им. газ. «Красноярский рабочий», 31

E-mail: [email protected]

Рассмотрена математическая модель конденсатора-испарителя криогенных воздухораздели-тельных установок, основанная на совместном решении уравнений гидродинамики и теплообмена для трубчатых аппаратов.

Ключевые слова: конденсатор-испаритель, математическая модель, проектирование, оптимизация.

MATHEMATICAL MODEL OF AIR SEPARATION PLANT EVAPORATOR-CONDENSER

V. V. Chernenko, D. V. Chernenko

Reshetnev Siberian State Aerospace University 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation E-mail: [email protected]

The mathematical model of evaporator-condenser of cryogenic air separation plants, based on the simultaneous solution of hydrodynamics and heat exchange equations for the tubular devices.

Keywords: evaporator-condenser, mathematical model, design, optimization.

Конденсаторы-испарители в воздухоразделительных установках (ВРУ) служат для конденсации азота за счет кипения кислорода, т.е. представляют собой теплообменные аппараты с изменением агрегатного состояния обоих участвующих в процессе теплообмена сред.

Эффективность работы конденсатора-испарителя в значительной мере определяет экономичность работы всей установки. К примеру, увеличение разницы температур между обменивающимися теплом средами на 1 °К приводит к увеличению расхода энергии на сжатие воздуха до 5 % общих энергетических затрат. С другой стороны, уменьшение температурного напора ниже предельного значения приводит к необходимости значительного увеличения теплопередающей поверхности. Учитывая большие энергопотребление и металлоёмкость аппаратов ВРУ, становится очевидной необходимость оптимизации каждого их элемента, в том числе, конденсатора-испарителя.

Наиболее целесообразным методом исследования и оптимизации таких крупных и дорогостоящих объектов является математическое моделирование, поскольку позволяет объективно рассмотреть и сопоставить множество различных вариантов и выбрать наиболее приемлемый, а также ограничить масштабы физического эксперимента проверкой адекватности модели и определением численных значений коэффициентов, которые не могут быть получены аналитическим путем.

Конденсаторы-испарители ВРУ работают в режиме естественной циркуляции, соответственно, в них имеется сложная взаимосвязь тепловых и гидравлических характеристик процесса парообразования. Теплоотдача со стороны кипящей жидкости определяется скоростью циркуляции, которая, в свою очередь, может быть найдена из гидравлического расчета при известных значениях тепловых потоков и геометрических размеров поверхности теплообмена, являющихся целевой функцией оптимизационной задачи. Кроме того, процесс кипения реализуется одновременно с процессом конденсации, что накладывает ограничения на соотношения тепловых потоков и температурных напоров обоих процессов. Таким образом, модель должна строиться на базе системы уравнений, описывающих циркуляцию кипящей жидкости и процессы теплоотдачи с обеих сторон теплопередающей поверхности.

Актуальные проблемы авиации и космонавтики - 2016. Том 1

Представленная модель, схема которой приведена на рис. 1, включает в себя наиболее характерные случаи, встречающиеся при проектировании и эксплуатации конденсаторов-испарителей. Расчетная методика основана на использовании принципа последовательных приближений.

В качестве входных факторов используются: величина общей тепловой нагрузки; давление на стороне кипения; давление на стороне конденсации; концентрация испаряющихся паров по О2; концентрация конденсата по N2; высота, наружный и внутренний диаметры труб.

Блок предварительно выбираемых параметров включает в себя определение температур кипения и конденсации рабочих сред с учетом примесей , а также необходимую для запуска гидравлического расчета предварительную оценку величин располагаемого температурного напора и среднего по активной поверхности греющей секции удельного теплового потока со стороны кипящей жидкости.

Целью гидравлического расчета является определение скорости циркуляции, протяженности экономайзерной зоны, давлений и температур в характерных сечениях канала. Для расчета используется традиционная схема контура с естественной циркуляцией жидкости (рис. 2).

1 Входные факторы /

Предварительный выбор параметров

Гидравлический расчет

Тепловой расчет

Тепггоотдача при конденсации

Т еппо отдача при кипении

Сходимость результатов расчета и выбранных - _ величин

Выходные параметры

Рис. 1. Расчетная схема модели конденсатора-испарителя ВРУ

Рис. 2. Гидравлическая модель конденсатора-испарителя ВРУ: I - длина труб; 1оп - длина опускной части; /эк - длина экономайзерной части; 4ип - длина кипящей части; 1р - рабочая длина; ю0 - скорость циркуляции

Задачей теплового расчета является уточнение значения плотности теплового потока на активном участке трубы по результатам гидравлического расчета, а также уточнение располагаемого температурного напора с учетом гидростатической и концентрационной температурной депрессии. Модуль расчета конденсации использует модель теплоотдачи при конденсации однокомпонентного пара на вертикальной стенке при ламинарном течении пленки конденсата. Модуль расчета кипения основан на модели теплоотдачи к двухфазному потоку в трубе .

Секция «Моделирование физико-механических и тепловьх процессов в машинах и аппаратах»

Гидравлический и тепловой расчеты повторяются в той же последовательности, если предварительные и расчетный значения плотности теплового потока отличаются более чем на 5 %. Точность расчета, как правило, оказывается достаточной после второго приближения.

Выходными параметрами являются площадь поверхности теплообмена, диаметр центральной циркуляционной трубы, количество и разбивка труб в трубной решетке и диаметр кожуха аппарата.

1. Наринский Г. Б. Равновесие жидкость-пар в системах кислород-аргон, аргон-азот и кислород-аргон-азот // Труды ВНИИКИМАШ. 1967. Вып. 11 ; 1969. Вып. 13.

2. Григорьев В. А., Крохин Ю. И. Тепло- и массообменные аппараты криогенной техники: учеб. пособие для вузов. М. : Энергоиздат, 1982.

3. Разделение воздуха методом глубокого охлаждения. 2-е изд. Т. 1 / под ред. В. И. Епифановой и Л. С. Аксельрода. М. : Машиностроение, 1973.

© Черненко В. В., Черненко Д. В., 2016