Портал о ремонте ванной комнаты. Полезные советы

Тектоническое строение россии. Структура тектоническая

Шаг за шагом:

1. Сопоставим физическую и тектоническую карты. Определим, на какой тектонической структуре находится территория.

Территория России расположена на следующих литосферных плитах: Евразийской, Охотоморской, Северо-Американской. На их территории можно выделить следующие тектонические структуры: Восточно-Европейская платформа, Балтийский щит, Скифская платформа, Кавказские горы, Печерская платформа, Уральские горы, Западно-Сибирская платформа, Сибирская платформа, Анабарский и Алданский щит, горы Южной Сибири, горы Дальнего Востока, горы Камчатки и Сахалина.

2. По шкале высот на физической карте установим, какие высоты преобладают в её пределах.

Восточно-Европейская платформа – преобладающие высоты: 150-200 м., Балтийский щит – преобладающие высоты: 200-500 м., Скифская платформа – преобладающие высоты: 0-200 м., Кавказские горы – преобладающие высоты: 2000-3000 м., Печерская платформа– преобладающие высоты: 0-200 м. , Уральские горы – преобладающие высоты: 500-1000 м., Западно-Сибирская платформа – преобладающие высоты: 0-200 м., Сибирская платформа – преобладающие высоты: 200-500 м., Анабарский и Алданский щит – преобладающие высоты: 500-1000 м., горы Южной Сибири – преобладающие высоты: 1000-2000 м., горы Дальнего Востока – преобладающие высоты: 1000-2000 м., горы Камчатки и Сахалина – преобладающие высоты: 2000-3000 м.

3. Определим характер рельефа (горный, равнинный) и его особенности.

Восточно-Европейская платформа – равнинный рельеф, с большим числом возвышенностей, Балтийский щит – невысокие, древние горы, Скифская платформа – низменности и равнины, Кавказские горы – высокие молодые горы в широтном направлении, Печерская платформа– равнины, Уральские горы – древние горы в меридиональном направлении, Западно-Сибирская низменности и равнины с уклоном рельефа на север, Сибирская платформа – плоскогорья и холмы, Анабарский и Алданский щит – древние разрушенные горы, горы Южной Сибири – старые, но высокие горы в широтном направлении, горы Дальнего Востока – высокие горы среднего возраста, горы Камчатки и Сахалина – молодые горы с вулканической активностью.

4. Сделаем вывод о зависимости рельефа от тектонического строения территории.

Сопоставление карт тектонического строения и рельефа, показывает общую закономерность, что древние и молодые платформы соответствуют равнинам и низменностям, щиты – древним, невысоким горам и плоскогорьям, складчатости – высоким горам.

1. На карте на с. 250-251 Приложения найдите: а) древние и молодую платформы (как они называются?); б) выступы кристаллического фундамента древних платформ на поверхность (как они называются?). Месторождения каких полезных ископаемых с ними связаны?

А) Древние платформы: Восточно-Европейская платформа и Сибирская платформа; молодые платформы: Скифская платформа, Печерская платформа, Западно-Сибирская платформа.

Б) Выступы кристаллических пород на поверхности платформ называются щитами: Балтийский щит, Анабарский и Алданский щит. Им присуще рудные полезные ископаемые (железо, никель, алюминий, медь и др.).

2. Выберите верный ответ. На территории России преобладают: а) низкие горы; б) высокие и средневысотные горы; в) равнины; г) нагорья.

3. Выберите верный ответ. Места выхода кристаллического фундамента платформ на поверхность называют: а) щитами; б) плитами; в) впадинами.

4. Продолжите определения: а) Геосинклиналь - это...; б) Платформа - это... .

А) Геосинклиналь – очень крупный и протяженный прогиб земной коры с длительным погружением, в результате которого формируются мощные тела осадочных и магматических горных пород, в дальнейшем вовлекаемые в складчатость и горообразование.

Б) Платформа – крупный участок континентальной земной коры, характеризующийся относительно спокойным тектоническим режимом. Платформы противопоставляются высокоподвижным геосинклинальным поясам.

5. Чем отличается строение плиты от строения щита?

В строении плиты присутствует осадочный чехол, на щите он отсутствует.

6. Используя шкалу высот на физической карте России (см. Приложение, с. 244-245), определите средние и максимальные высоты Восточно-Европейской и Западно-Сибирской равнин.

Восточно-Европейская равнина: средние высоты 170 м., максимальная высота 479 м – на Бугульминско-Белебеевской возвышенности в Предуралье; Западная Сибирь: средние высоты 100 м., максимальная высота 285 м.

7. Используя физическую и тектоническую карты, определите, какие из перечисленных гор относятся к области наиболее молодой складчатости и являются самыми высокими: а) Хибины; б) Большой Кавказ; в) Урал; г) Алтай.

Наиболее молодыми являются Кавказские горы (ответ б), однако, Алтай, хоть и возник в период Герцинской складчатости, но в Неогене (Kz), он претерпел вертикальные поднятия, в результате данные горы оказались довольно высокими.

8. Опишите особенности рельефа вашей местности, используя рубрику «Шаг за шагом».

Территория Челябинской области расположена на двух тектонических структурах – Уральские горы (запад области) и Западно-Сибирской (восток области) платформе. На западе преобладающие высоты 800-1000 м., которые в центральной части области понижаются, поскольку восточные склоны Южного Урала переходят в Зауральский пенеплен, где средние высоты составляют 200-500 м., на востоке области пенеплен переходит в Западно-Сибирскую равнину с высотами 0-200 м. Поэтому Уралу – соответствуют горы, Зауральскому пенеплену – холмистые равнины, Западной Сибири – низменности.

Тектоника - наука о строении, движениях земной коры в связи с геологическим развитием Земли в целом. В пределах материков выделяют крупные тектонические структуры, которые отчетливо выражены в современном рельефе. - платформу и складчатые области. Строение земной коры, ее основные тектонические структуры, их типы и возраст, этапы горообразования, а также современные тектонические явления отражаются на тектонических картах.

Платформы и их строение

Платформа - это крупный, относительно устойчивый и тектонически спокойный участок земной коры, имеющий двухъярусное строение. Нижний ярус платформы - кристаллический фундамент, верхний - осадочный чехол (рис. 5). Крис таллический фундамент - древнее основание платформы, сложенное магматическими и метаморфическими породами. Осадочный чехол - верхний ярус платформы, сложен обычно более молодыми осадочными горными породами. Средняя мощность чехла на платформе составляет 5-6 км, максимальная достигает более 10 км (Прикаспийская низменность).

Платформы - это основные элементы тектонической структуры материков. Платформы характеризуются равнинным рельефом. Для них характерны отсутствие или редкие проявления вулканической деятельности, очень слабая сейсмичность.

В пределах платформ выделяют плиты и щиты. Платформенные плиты - крупные (сотни и даже тысячи километров в поперечнике) части платформы, перекрытые осадочным чехлом. Плиты занимают основную площадь древних и молодых платформ, для них характерен мощный сформировавшийся чехол (например, Северо-Американская и Восточно-Европейская плиты). В рельефе платформенным плитам соответствуют равнины.

Щиты - это участки платформ, на которых кристаллический фундамент выходит на поверхность Земли, обнажается. Это части древних платформ, которые в течение длительного геологического времени поднимались, подвергаясь разрушению. Примерами таких образований являются Балтийский (равнины Скандинавии), Украинский (Подольская возвышенность) щиты в пределах Восточно-Европейской платформы, Канадский щит (Лаврентийская возвышенность) на Северо-Американской платформе.

В пределах щитов выявлены крупные месторождения рудных полезных ископаемых: золота, марганцевых, урановых и железных руд, алмазов. С осадочным чехлом в пределах плит связаны месторождения осадочных полезных ископаемых: нефти, природного газа, каменного угля, калийных солей и др.

По времени образования кристаллического фундамента платформы делятся на древние и молодые. Древние платформы занимают до 40 % площади материков.

Древние платформы подразделяются на 3 типа: лавразийский, гондванский и переходный. К первому типу относятся Северо-Американская, Восточно-Европейская и Сибирская платформы, образованные в результате распада суперконтинента Лавразия. Они преимущественно погружаются, и для них характерны шельфовые моря. Ко второму типу относятся Южно-Американская, Африкано-Аравийская, Индийская, Австралийская и Антарктическая платформы, бывшие в составе Гондваны. В них поднятия преобладают над погружениями, в результате чего осадочный чехол еще не сформировался и распространен ограниченно. К третьему переходному типу относится Китайская платформа, разделенная на отдельные блоки и отличающаяся молодостью, неустойчивостью и повышенной сейсмичностью.

К древним платформам примыкают молодые: Западно-Сибирская, Патагонская, Туранская платформы. Фундамент их образован на более поздних стадиях развития земной коры и имеет складчатое строение. Он сложен в основном осадочно-вулканическими породами. Молодые платформы занимают лишь 5 % всей площади континентов. (Покажите на карте «Строение земной коры» расположение платформ на Земле.)

Складчатые области

Кроме платформ, в пределах материков выделяют также складчатые области - отдельные крупные части складчатых поясов, тектонические подвижные участки земной коры, в пределах которых слои горных пород смяты в складки. Они отличаются интенсивными тектоническими поднятиями и опусканиями, формированием магматических отложений при извержении вулканов и накоплением осадочных пород в понижениях. Протяженность складчатых областей составляет тысячи километров. Образование большей части складчатых областей является закономерным этапом развития подвижных зон земной коры.

Процесс формирования складчатых областей начинается с погружения (прогибания) земной коры. Погружение сопровождается накоплением в прогибе мощных осадочных отложений. Далее процессы погружения сменяются поднятием. Осадочные породы сжимаются и сминаются в складки, а по образующимся трещинам в них внедряется и застывает магма. Формируются складчатые области. В рельефе они выражены горами. Образование складок происходило на разных геологических этапах развития земной коры, поэтому горы имеют разный возраст. Горы, в свою очередь, постепенно разрушаются. На месте складчатых областей со временем формируются более устойчивые тектонические структуры - платформы.

Современный рельеф планеты формировался в течение длительного времени под воздействием внутренних и внешних сил и продолжает формироваться в наше время (рис. 6).

Внутренние силы, действующие в недрах Земли (горообразовательные движения, деятельность вулканов, ), играют главную роль при образовании крупных форм рельефа. Внешние силы вызывают процессы, происходящие на поверхности Земли (выветривание, эрозия, деятельность ледников и др.). Рельеф воздействует на формирование климата, характер течения рек, распространение животных и растений, условия жизни людей. Рельеф является той основой, на которой живет и занимается хозяйственной деятельностью человек.

Основными тектоническими структурами земной коры являются платформы и складчатые области. Платформы имеют двухъярусное строение (нижний ярус - кристаллический фундамент, верхний - осадочный чехол), в их пределах выделяют платформенные плиты и щиты. Платформам в рельефе, как правило, соответствуют равнины, а складчатым областям - горы.

поиск по словарю

Скопируйте код и вставьте в свой блог:

СТРУКТУРА ТЕКТОНИЧЕСКАЯ - совокупностьструктурных форм какого-либо участка земной коры, определяющая его геол. строение и обусловленная господством того или иного тект. режима. В широком смысле этот термин охватывает разнообразные части земной коры, образующиеся благодаря множеству сочетаний разл. структурных форм. Наиболее существенными признаками, по которым систематизируют С. т. и которые находятся в зависимости друг от друга, являются масштаб, морфология и генезис. Классифицируя С. т. по размеру, имеют в виду конкретные, в большей или меньшей степени обособленные участки земной коры, отличающиеся от смежных участков определенным сочетанием состава, форм залегания и геофиз. параметров слагающих их п. ; в свою очередь эти отличия отражают специфику истории движений земной коры, или тект. режим, характерный для отдельных этапов развития данного участка. Общепринятая классификация С. т. пока не разработана; наиболее распространенной является следующая. 1. С. т. I порядка - океаны и зоны переходные между ними. 2. С. т. II порядка - области складчатые (Алтае-Саянская), области геосинклинальные (Курило-Восточнокамчатская), в пределах океанов - талассократоны, пояса срединно-океанские подвижные межгорные впадины; на древних и молодых платформах - синеклизы, впадины, желоба и др. ; в складчатых и геосинклинальных системах - тект. зоны и подзоны, которым обычно соответствуют сложные структурные формы - синклинории. Чем мельче порядок С. т., тем ближе они к элементарным структурным формам, из комбинаций которых по существу состоят С. т. высших порядков. По морфогенетическим признакам С. т., как и структурные формы, делят на 2 главные категории - плавные (или связные) и разрывные. Первые представляют собой деформации разного масштаба и формы, образующиеся в общем без нарушения сплошности составляющих их п., вторые образуют разл. Структуры тектонические нефтеносных территорий. Б. П. Бархатов.

Источник: Геологический словарь


СТРУКТУРА ТЕКТОНИЧЕСКАЯ - совокупностьструктурных форм какого-либо участка земной коры, определяющая его геол. строение и обусловленная господством того или иного тект. режима. В широком смысле этот термин охватывает разнообразные части земной коры, образующиеся благодаря множеству сочетаний разл. структурных форм. Наиболее существенными признаками, по которым систематизируют С. т. и которые находятся в зависимости друг от друга, являются масштаб, морфология и генезис. Классифицируя С. т. по размеру, имеют в виду конкретные, в большей или меньшей степени обособленные участки земной коры, отличающиеся от смежных участков определенным сочетанием состава, форм залегания и геофиз. параметров слагающих их п. ; в свою очередь эти отличия отражают специфику истории движений земной коры, или тект. режим, характерный для отдельных этапов развития данного участка. Общепринятая классификация С. т. пока не разработана; наиболее распространенной является следующая. 1. С. т. I порядка - , и между ними. 2. С. т. II порядка - [напр., Сибирская (древняя), Западно-Сибирская (молодая)], (Алтае-Саянская), области геосинклинальные (Курило-Восточнокамчатская), в пределах океанов - , пояса срединно-океанские подвижные . 3. С. т. III порядка - в складчатых областях складчатые системы (Уральская, Тяныианьская), срединные массивы (Омолонский), межгорные впадины ; на древних и молодых платформах - , и др. ; в пределах океанских впадин выделение структур III порядка только начато (котловины, кряжи, валы). Структуры I и II порядков относятся к структурам глубинного заложения (Арган, Пейве); в их строении участвует верхняя часть мантии. Структуры III порядка локализуются в пределах осад, и частично гранитно-метам. (гранитно-гнейсового) слоя земной коры, почему могут быть отнесены к С. т. коррвым. Глубинные структуры отличаются от С. т. коровых еще и тем, что их форма по подошве коры нередко не совпадает с формой по кровле. Глубинные структуры обычно нельзя считать просто изгибами пластин коры и, следовательно, между ними и коровыми структурами существует не только количественное, но и качественное отличие. 4. К С. т. IV порядка и мельче в пределах платформ относят

Тектоника плит (plate tectonics ) - современная геодинамическая концепция, основанная на положении о крупномасштабных горизонтальных перемещениях относительно целостных фрагментов литосферы (литосферных плит). Таким образом, тектоника плит рассматривает движения и взаимодействия литосферных плит.

Впервые предположение о горизонтальном движении блоков коры было высказано Альфредом Вегенером в 1920-х годах в рамках гипотезы «дрейфа континентов», но поддержки эта гипотеза в то время не получила. Лишь в 1960-х годах исследования дна океанов дали неоспоримые доказательства горизонтальных движении плит и процессов расширения океанов за счёт формирования (спрединга) океанической коры. Возрождение идей о преобладающей роли горизонтальных движений произошло в рамках «мобилистического» направления, развитие которого и повлекло разработку современной теории тектоники плит. Основные положения тектоники плит сформулированы в 1967-68 группой американских геофизиков - У. Дж. Морганом, К. Ле Пишоном, Дж. Оливером, Дж. Айзексом, Л. Сайксом в развитие более ранних (1961-62) идей американских учёных Г. Хесса и Р. Дигца о расширении (спрединге) ложа океанов

Основные положения тектоники плит

Основные положения тектоники плит можно свети к нескольким основополагающим

1. Верхняя каменная часть планеты разделена на две оболочки, существенно различающиеся по реологическим свойствам: жесткую и хрупкую литосферу и подстилающую её пластичную и подвижную астеносферу.

2. Литосфера разделена по плиты, постоянно движущиеся по поверхности пластичной астеносферы. Литосфера делится на 8 крупных плит, десятки средних плит и множество мелких. Между крупными и средними плитами располагаются пояса, сложенные мозаикой мелких коровых плит.

Границы плит являются областями сейсмической, тектонической и магматической активности; внутренние области плит слабо сейсмичны и характеризуются слабой проявленностью эндогенных процессов.

Более 90 % поверхности Земли приходится на 8 крупных литосферных плит:

Австралийская плита,
Антарктическая плита,
Африканская плита,
Евразийская плита,
Индостанская плита,
Тихоокеанская плита,
Северо-Американская плита,
Южно-Американская плита.

Средние плиты: Аравийская (субконтинент), Карибская, Филиппинская, Наска и Кокос и Хуан де Фука и др..

Некоторые литосферные плиты сложены исключительно океанической корой (например, Тихоокеанская плита), другие включают фрагменты и океанической и континентальной коры.

3. Различают три типа относительных перемещений плит: расхождение (дивергенция), схождение (конвергенция) и сдвиговые перемещения .

Соответственно, выделяются и три типа основных границ плит.

Дивергентные границы – границы, вдоль которых происходит раздвижение плит.

Процессы горизонтального растяжения литосферы называют рифтогенезом . Эти границы приурочены к континентальным рифтам и срединно-океанических хребтам в океанических бассейнах.

Термин «рифт» (от англ. rift – разрыв, трещина, щель) применяется к крупным линейным структурам глубинного происхождения, образованным в ходе растяжения земной коры. В плане строения они представляют собой грабенообразные структуры.

Закладываться рифты могут и на континентальной, и на океанической коре, образуя единую глобальную систему, ориентированную относительно оси геоида. При этом эволюция континентальных рифтов может привести к разрыву сплошности континентальной коры и превращению этого рифта в рифт океанический (если расширение рифта прекращается до стадии разрыва континентальной коры, он заполняется осадками, превращаясь в авлакоген).


Процесс раздвижения плит в зонах океанских рифтов (срединно-океанических хребтов) сопровождается образованием новой океанической коры за счёт магматических базальтовых расплав поступающих из астеносферы. Такой процесс образования новой океанической коры за счёт поступления мантийного вещества называется спрединг (от англ. spread – расстилать, развёртывать) .

Строение срединно-океанического хребта

В ходе спрединга каждый импульс растяжения сопровождается поступлением новой порции мантийных расплавов, которые, застывая, наращивают края расходящихся от оси СОХ плит.

Именно в этих зонах происходит формирование молодой океанической коры.

Конвергентные границы – границы, вдоль которых происходит столкновение плит. Главных вариантов взаимодействия при столкновении может быть три: «океаническая – океаническая», «океаническая – континентальная» и «континентальная - континентальная» литосфера. В зависимости от характера сталкивающихся плит, может протекать несколько различных процессов.

Субдукция – процесс поддвига океанской плиты под континентальную или другую океаническую. Зоны субдукции приурочены к осевым частям глубоководных желобов, сопряжённых с островными дугами (являющихся элементами активных окраин). На субдукционные границы приходится около 80% протяжённости всех конвергентных границ.

При столкновении континентальной и океанической плит естественным явлением является поддвиг океанической (более тяжёлой) под край континентальной; при столкновении двух океанических погружается более древняя (то есть более остывшая и плотная) из них.

Зоны субдукции имеют характерное строение: их типичными элементами служат глубоководный желоб – вулканическая островная дуга – задуговый бассейн. Глубоководный желоб образуется в зоне изгиба и поддвига субдуцирующей плиты. По мере погружения эта плита начинает терять воду (находящуюся в изобилии в составе осадков и минералов), последняя, как известно, значительно снижает температуру плавления пород, что приводит к образованию очагов плавления, питающих вулканы островных дуг. В тылу вулканической дуги обычно происходит некоторое растяжение, определяющее образование задугового бассейна. В зоне задугового бассейна растяжение может быть столь значительным, что приводит к разрыву коры плиты и раскрытию бассейна с океанической корой (так называемый процесс задугового спрединга).

Погружение субдуцирующей плиты в мантию трассируется очагами землетрясений, возникающих на контакте плит и внутри субдуцирующей плиты (более холодной и вследствие этого более хрупкой, чем окружающие мантийные породы). Эта сейсмофокальная зона получила название зона Беньофа-Заварицкого .

В зонах субдукции начинается процесс формирования новой континентальной коры.

Значительно более редким процессом взаимодействия континентальной и океанской плит служит процесс обдукции – надвигания части океанической литосферы на край континентальной плиты. Следует подчеркнуть, что в ходе этого процесса происходит расслоение океанской плиты, и надвигается лишь её верхняя часть – кора и несколько километров верхней мантии.

При столкновении континентальных плит, кора которых более лёгкая, чем вещество мантии, и вследствие этого не способна в неё погрузиться, протекает процесс коллизии . В ходе коллизии края сталкивающихся континентальных плит дробятся, сминаются, формируются системы крупных надвигов, что приводит к росту горных сооружений со сложным складчато-надвиговым строением. Классическим примером такого процесса служит столкновение Индостанской плиты с Евразийской, сопровождающееся ростом грандиозных горных систем Гималаев и Тибета.

Модель процесса коллизии

Процесс коллизии сменяет процесс субдукции, завершая закрытие океанического бассейна. При этом в начале коллизионного процесса, когда края континентов уже сблизились, коллизия сочетается с процессом субдукции (продолжается погружение под край континента остатков океанической коры).

Для коллизионных процессов типичны масштабный региональный метаморфизм и интрузивный гранитоидный магматизм. Эти процессы приводят к созданию новой континентальной коры (с её типичным гранито-гнейсовым слоем).

Трансформные границы – границы, вдоль которых происходят сдвиговые смещения плит.

Границы литосферных плит Земли

1 – дивергентные границы (а – срединно-океанские хребты, б – континентальные рифты); 2 – трансформные границы; 3 – конвергентные границы (а – островодужные, б – активные континентальные окраины, в – коллизионные); 4 – направления и скорости (см/год) движения плит.

4. Объём поглощённой в зонах субдукции океанской коры равен объёму коры, возникающей в зонах спрединга. Это положении подчёркивает мнение о постоянстве объёма Земли. Но такое мнение не является единственным и окончательно доказанным. Не исключено, что объём планы меняется пульсационно, или происходит уменьшение его уменьшение за счёт охлаждения.

5. Основной причиной движения плит служит мантийная конвекция , обусловленная мантийными теплогравитационными течениями.

Источником энергии для этих течений служит разность температуры центральных областей Земли и температуры близповерхностных её частей. При этом основная часть эндогенного тепла выделяется на границе ядра и мантии в ходе процесса глубинной дифференциации, определяющего распад первичного хондритового вещества, в ходе которого металлическая часть устремляется к центру, наращивая ядро планеты, а силикатная часть концентрируются в мантии, где далее подвергается дифференциации.

Нагретые в центральных зонах Земли породы расширяются, плотность их уменьшается, и они всплывают, уступая место опускающимся более холодными и потому более тяжёлым массам, уже отдавшим часть тепла в близповерхностных зонах. Этот процесс переноса тепла идёт непрерывно, в результате чего возникают упорядоченные замкнутые конвективные ячейки. При этом в верхней части ячейки течение вещества происходит почти в горизонтальной плоскости, и именно эта часть течения определяет горизонтальное перемещение вещества астеносферы и расположенных на ней плит. В целом, восходящие ветви конвективных ячей располагаются под зонами дивергентных границ (СОХ и континентальными рифтами), нисходящие – под зонами конвергентных границ.

Таким образом, основная причина движения литосферных плит – «волочение» конвективными течениями.

Кроме того, на плиты действуют ещё рад факторов. В частности, поверхность астеносферы оказывается несколько приподнятой над зонами восходящих ветвей и более опущенной в зонах погружения, что определяет гравитационное «соскальзывание» литосферной плиты, находящейся на наклонной пластичной поверхности. Дополнительно действуют процессы затягивания тяжёлой холодной океанской литосферы в зонах субдукции в горячую, и как следствие менее плотную, астеносферу, а также гидравлического расклинивания базальтами в зонах СОХ.

Рисунок - Силы, действующие на литосферные плиты.

К подошве внутриплитовых частей литосферы приложены главные движущие силы тектоники плит – силы мантийного “волочения” (англ. drag) FDO под океанами и FDC под континентами, величина которых зависит в первую очередь от скорости астеносферного течения, а последняя определяется вязкостью и мощностью астеносферного слоя. Так как под континентами мощность астеносферы значительно меньше, а вязкость значительно больше, чем под океанами, величина силы FDC почти на порядок уступает величине FDO . Под континентами, особенно их древними частями (материковыми щитами), астеносфера почти выклинивается, поэтому континенты как бы оказываются “сидящими на мели”. Поскольку большинство литосферных плит современной Земли включают в себя как океанскую, так и континентальную части, следует ожидать, что присутствие в составе плиты континента в общем случае должно “тормозить” движение всей плиты. Так оно и происходит в действительности (быстрее всего движутся почти чисто океанские плиты Тихоокеанская, Кокос и Наска; медленнее всего – Евразийская, Северо-Американская, Южно-Американская, Антарктическая и Африканская, значительную часть площади которых занимают континенты). Наконец, на конвергентных границах плит, где тяжелые и холодные края литосферных плит (слэбы) погружаются в мантию, их отрицательная плавучесть создает силу FNB (индекс в обозначении силы – от английского negative buoyance ). Действие последней приводит к тому, что субдуцирующая часть плиты тонет в астеносфере и тянет за собой всю плиту, увеличивая тем самым скорость ее движения. Очевидно, сила FNB действует эпизодически и только в определенных геодинамических обстановках, например в случаях описанного выше обрушения слэбов через раздел 670 км.

Таким образом, механизмы, приводящие в движение литосферные плиты, могут быть условно отнесены к следующим двум группам: 1) связанные с силами мантийного “волочения” (mantle drag mechanism ), приложенными к любым точкам подошвы плит, на рис. 2.5.5 – силы FDO и FDC ; 2) связанные с силами, приложенными к краям плит (edge-force mechanism ), на рисунке – силы FRP и FNB . Роль того или иного движущего механизма, а также тех или иных сил оценивается индивидуально для каждой литосферной плиты.

Совокупность этих процессов отражает общий геодинамический процесс, охватывающих области от поверхностных до глубинных зон Земли.

Мантийная конвекция и геодинамические процессы

В настоящее время в мантии Земли развивается двухъячейковая мантийная конвекция с закрытыми ячейками (согласно модели сквозьмантийной конвекции) или раздельная конвекция в верхней и нижней мантии с накоплением слэбов под зонами субдукции (согласно двухъярусной модели). Вероятные полюсы подъема мантийного вещества расположены в северо-восточной Африке (примерно под зоной сочленения Африканской, Сомалийской и Аравийской плит) и в районе острова Пасхи (под срединным хребтом Тихого океана – Восточно-Тихоокеанским поднятием).

Экватор опускания мантийного вещества проходит примерно по непрерывной цепи конвергентных границ плит по периферии Тихого и восточной части Индийского океанов.

Современный режим мантийной конвекции, начавшийся примерно 200 млн. лет назад распадом Пангеи и породивший современные океаны, в будущем сменится на одноячейковый режим (по модели сквозьмантийной конвекции) или (по альтернативной модели) конвекция станет сквозьмантийной за счет обрушения слэбов через раздел 670 км. Это, возможно, приведет к столкновению материков и формированию нового суперконтинента, пятого по счету в истории Земли.

6. Перемещения плит подчиняются законам сферической геометрии и могут быть описаны на основе теоремы Эйлера. Теорема вращения Эйлера утверждает, что любое вращение трёхмерного пространства имеет ось. Таким образом, вращение может быть описана тремя параметрами: координаты оси вращения (например, её широта и долгота) и угол поворота. На основании этого положения может быть реконструировано положение континентов в прошлые геологические эпохи. Анализ перемещений континентов привёл к выводу, что каждые 400-600 млн. лет они объединяются в единый суперконтинент, подвергающийся в дальнейшем распаду. В результате раскола такого суперконтинента Пангеи, произошедшего 200-150 млн. лет назад, и образовались современные континенты.

Некоторые доказательства реальности механизма тектоники литосферных плит

Удревнение возраста океанической коры по мере удаления от осей спрединга (см. рисунок). В этом же направлении отмечается нарастание мощности и стратиграфической полноты осадочного слоя.

Рисунок - Карта возраста пород океанического дна Северной Атлантики (по У. Питмену и М. Тальвани, 1972). Разным цветом выделены участки океанского дна различных возрастных интервалов; цифрами указан возраст в миллионах лет.

Геофизические данные.

Рисунок – Томографический профиль через Эллинский желоб, остров Крит и Эгейское море. Серые кружки – гипоцентры землетрясений. Синим цветом показана пластина погружающейся холодной мантии, красным – горячая мантия (по данным В. Спэкмена, 1989)

Остатки огромной плиты Фаралон, исчезнувшей в зоне субдукции под Северной и Южной Америками, фиксируемые в виде слейбов «холодной» мантии (разрез поперек Сев. Америки, по S-волнам). По Grand, Van der Hilst, Widiyantoro, 1997, GSA Today, v. 7, No. 4, 1-7

Линейные магнитные аномалии в океанах были обнаружены в 50-х годах при геофизическом изучении Тихого океана. Это открытие позволило в 1968 году Хессу и Дицу сформулировать теорию спрединга океанического дна, которая выросла в теорию тектоники плит. Они стали одним из самых веских доказательств правильности теории.

Рисунок - Образование полосовых магнитных аномалий при спрединге.

Причиной происхождения полосовых магнитных аномалий является процесс рождения океанической коры в зонах спрединга срединно-океанических хребтов, излившиеся базальты при остывании ниже точки Кюри в магнитном поле Земли, приобретают остаточную намагниченность. Направление намагниченности совпадает с направлением магнитного поля Земли, однако вследствие периодических инверсий магнитного поля Земли излившиеся базальты образуют полосы с различным направлением намагниченности: прямым (совпадает с современным направлением магнитного поля) и обратным.

Рисунок - Схема образования полосовой структуры магнитоактивного слоя и магнитных аномалий океана (модель Вайна – Мэтьюза).

Тектонический анализ территории начинается и завершается составлением тектонической карты, которая представляет собой графическую модель строения и эволюции части з.к. В зависимости от масштаба тект. карты бывают глобальными (1:45000000 – 1:15000000), обзорными (1:10000000 – 1:2500000), региональными мелкомасштабными (1:500000), региональными средне- и крупно масштабными (1:200000 – 1:50000). Карты могут быть общего и специального назначения. Общие тектонические карты в равной мере содержат данные о современной тектонической структуре з.к. и истории ее формирования. Специализированные тект карты включают выборочные данные о структурных особенностях площади карты разломов, изогипс, карты кольцевых структур или отражают структурную характеристику площади на тот или иной интервал времени или на определенный момент геологической истории (палеотектонические карты). Пример: Обзорные карты общего содержания – «Тектоническая карта СССР 1:4000000» под руководством Шатского. Обзорные карты специализированного содержания – «Палеотектонические карты 1:75000000 – 1:5000000»

4. Общие особенности строения древних платформ Лавразии.

Восточно-Европейская, Северо-Американская, Сибирская и Китайские платформы х-ся фундаментом, имеющим раннедокембрийский возраст. Эти платформы окружены подвижными (складчатыми) поясами, которые их разделяют и одновременно спаивают. В пределах этих поясов широко распространены блоки с континентальной раннедокембрийской коры – срединные массивы, ранее входившие в состав этих платформ. В составе и в строении чехлов платформ Лавразийской группы множество общих черт, выраженных в общей этажности, сходстве состава отложений на отдельных стратиграфических уровнях (R-рифей, PZ2-средний палеозой, PZ3-T-верхний палеозой-триас, J-K-юра-мел)

5. Назовите поверхностные структуры, транссирующие границы Евразиатской плиты. Западная граница Евроазиатской плиты проходит по СОХ: Азорские острова – хребет Рейкьянес – далее по хребту Гаккеля – через Чукотку и Камчатку, вдоль зоны разломов к стыку Курило-Камчатского и Алеутского желобов. Далее граница протягивается на юг по Курило-Камчатскому желобу – Нансей – Филиппинский глубоководный желоб, огибая на юге по Зондскому желобу. Далее граница проходит по периферии Индостанской платформы, далее на северо-западе вдоль хребта Загрос, на запад через Критский желоб – Гибралтар и выходит к Азорским островам.

6. Содержание региональной тект карты и способы изображения элементов тект стр-ры

Различия масштабов карт, специфика регионов, элементы специализации в содержании яв-ся причинами разнообразия региональных тект карт. Тем не менее, легенды наибольшего числа региональных карт составлены по образу и подобию легенд обзорных тект карт. Тект районирование и внутренняя структура регионов изображается на картах с помощью цветной раскраски или штриховыми значками. Цветовая раскраска используется для выражения основного принципа районирования. Разнообразные цвета, их оттенки, степень интенсивности соответствуют регионам, отличающимся по возрасту главной складчатости, структурной этажности, вещественной характеристике разрезов, степени деформированности одновозрастных толщ. Различным цветом показывают литосферные плиты и обрамляющие их граничные зоны. Штриховые обозначения используют для изображения разного типа границ структурных зон и отдельных форм, разрывных нарушений, внемасштабных складчатых структур, вещественных комплексов. Штриховые знаки могут быть черными и цветными. Цветовая раскраска карты дополняется буквенными обозначениями – индексами, позволяющими легче прочитать карту.

7. Общие особенности строения платформ гондванской группы. В строении фундамента Африкано-Аравийской, Южно-Американской, Индостанской, Австралийской и Антарктической платформ существенное значении принадлежит метаморфическим рифейским комплексам, соединяющим воедино архей-нижнепротерозойские блоки. В разрезе протоплатформенного чехла гондванской группы известны верхнеархейские образования, что позволяет предположить ранние процессы кратонизации в ряду платформ гондванской группы. Платформенный чехол почти на всех платформах развит незначительно. В отличие от платформ северной группы, границы южных платформ на больших пространствах совпадают с границами материков. В результате чего они непосредственно соприкасаются с глубоководными впадинами. В верхнем палеозое на платформах южного ряда активно протекали процессы рифтогенеза, приведшие к накоплению в грабенах континентальных прибрежно-морских отложений. Приподнятость некоторых участков в начале верхнего палеозоя способствовала отложению ледниковых образований. В мезозое большие площади были охвачены процессами траппового магматизма с внедрением ультраосновных интрузий повышенной щелочности. В новейший этап большинство платформ также характеризуется высокой подвижностью.

8. Типы океанических структур . Около 250 млн. кв. км занято океаническими глубоководными равнинами, впадинами и разделяющими их внутриокеаническими поднятиями. Впадины океанов резко отличаются от материковых массивов тем, что поверхность земной коры в их пределах опущена на 4-5 км относительно материков, а толщина земной коры уменьшена в 5-7 раз. Различия в строении земной коры материков и океанов состоит в том, что на большей части океанов «гранито-гнейсовый» слой не установлен. Океаническое дно резко отличается по характеру сейсмичности. Можно выделить области высокой сейсмической активности и области ассейсмичные.

Первые – протяженные зоны, занятые системами СОХ, протягивающиеся через все океаны. Они характеризуются интенсивным вулканизмом, повышенным тепловым потоком, резко расчлененным рельефом с системами продольных и поперечных желобов и уступов, неглубоким залеганием поверхности мантии.

Вторые выражены в рельефе крупными океанскими котловинами, равнинами, плато, а также подводными хребтами, ограниченными уступами сбросового типа и внутриокеаническими валообразными хребтами. Внутри областей присутствуют подводные плато и поднятия с корой материкового типа (микроконтиненты). По аналогии со структурными континентами их называют талассократонами.