Портал о ремонте ванной комнаты. Полезные советы

Схема управления двумя реле с помощью одного вывода микроконтроллера. Один вывод микроконтроллера управляет двумя реле Расчет управляющего транзистора

Для индикации уровня сигнала или постоянного напряжения, тока частоиспользуют поликомпараторные микросхемы вроде AN6884, КА2284, ВА6124 или многие другие аналогичные. Такая микросхема представляет собой набор компараторов, с выходами на светодиоды, а так же измерительную схему и схему предварительного усиления, детектора.

На рисунке 1 показана типовая схема включения микросхем AN6884, КА2284, ВА6124. Деталей минимум, и получаем пятипороговый индикатор уровня. Светодиоды работают по принципу «градусника», то есть, если их расположить последовательно в линию и признать это все как непрерывную линию, то чем больше сигнал, тем длиннее линия (тем больше светодиодов горит).

Но, бывают случае, когда необходимо не только визуально определить уровень сигнала, но и предпринять какие-то меры, если уровень сигнала достиг некоторого уровня. Например, при зажигании светодиода HL5 нужно чтобы включилось электромагнитное реле и своими контактами включило некую нагрузку или устройство.

Схема подключения реле

На рисунке 2 показано как можно подключить обмотку реле. Но сначала обратите внимание на рисунок 1 - все светодиоды подключены к выходам микросхемы непосредственно, без каких-либо токоограничительных резисторов. Хотя, в литературе встречаются схемы и с токоограничительными резисторами.

На самом деле в токоограничительных резисторах, касательно микросхем AN6884, КА2284, ВА6124 и их аналогов, нет никакой необходимости, потому что внутри микросхемы, на каждом выходе есть схема ограничения тока. Поэтому, напряжение между выходом и положительной шиной питания не бывает больше прямого напряжения падения на светодиоде.

Рис. 1. Типовая схема включения микросхем AN6884, КА2284, ВА6124.

Рис. 2. Схема подключения реле к каналу индикатора сигнала.

Но такого небольшого напряжения недостаточно ни для обмотки реле, а зачастую и даже для открывания транзисторного ключа. Однако, повысить напряжение между выходом и шиной питания можно просто включением дополнительного токоограничительного резистора (R2 на рисунке 2). Благодаря ему напряжение на промежутке от выхода микросхемы до шины питания увеличивается. Изменяя сопротивление этого резистора можно выставить необходимое напряжение.

На рисунке 2 показана схема управления обмоткой реле - его включением, при включении светодиода HL5. При включении HL5 напряжение на выводе 1 относительно общего минуса падает, но относительно шины питания увеличивается. Достигает уровня, достаточного для открывания транзистора VT1. Он открывается, и вслед за ним открывается более мощный транзистор VT2. А в его коллекторной цепи включена обмотка реле К1.

Напряжение питания реле может отличаться от напряжения питания микросхемы. Точно таким же образом, можно соединить реле и с любым другим выходом микросхемы типа AN6884, КА2284, ВА6124, и даже сделать пять реле по числу выходов.

Затем это надо? Причин может быть множество. Например, при превышении уровня громкости нужно отключить источник звука, либо включить сигнализацию.

Или нужно реагировать на превышение тока в нагрузке. Или можно сделать переключатель, состоящий из переменного резистора и этой схемы. При вращении ручки переменного резистора будет меняться напряжение на входе микросхемы, а на её выходах будут включаться реле.

Снятие сигнала с индикатора

Если нужно управлять не реле, а каким-то цифровым устройством, например, при превышении некоего уровня сигнала подавать логическую единицу на вход микроконтроллера или сигнализатора, можно собрать схему, показанную на рисунке 3. Здесь также для примера взят вариант со светодиодом HL5, хотя, конечно, можно и с любого другого выхода микросхемы.

Рис.3. Схема получения логического сигнала с сегмента индикатора.

При зажигании HL5 напряжение на базе VT1 относительного его же эмиттера увеличивается, транзистор открывается и на его коллекторе напряжение увеличивается до уровня логической единицы, соответственно напряжению питания микросхемы.

Рис. 4. Подключение с опто-развязкой.

Ну и последний вариант, - использовать оптопару. Можно любую оптопару, как с мощным симистором для управления каким-то нагревателем (так называемое, «твердотельное реле»), так и маломощную транзисторную, для передачи команды на другую схему.

В любом случае, два варианта, либо светодиод оптопары включить последовательно индикаторному светодиоду, как показано на рисунке 4, либо вместо него, как на рисунке не показано, но можно догадаться, но только если в индикации нет никакой необходимости.

Каравкин В. РК-2016-04.

Gunther Kraut, Германия

Логическая «1», логический «0» и высокий импеданс. Трем состояниям выхода соответствуют три состояния двигателя: «вперед», «назад» и «стоп»

Для управления двумя независимыми нагрузками, такими, скажем, как реле, обычно требуются два порта ввода/вывода микроконтроллера. При этом вы имеете возможность включить два реле, включить одно и выключить другое, или выключить оба. Если же включать два реле одновременно не требуется, управлять оставшимися тремя состояниями можно с помощью одного вывода микроконтроллера. При этом используется высокоимпедансное состояние выхода.

Этой схеме можно найти применение, например, при управлении электродвигателями. Направление вращения мотора зависит от того, какая из двух его фаз выбрана. Для коммутации фаз можно использовать как классические электромеханические, так и твердотельные МОП реле. В любом из вариантов при размыкании обоих реле двигатель останавливается.

Для управления электромеханическими реле используется схема, изображенная на Рисунке 1. При логической «1» на выходе микроконтроллера транзистор Q 1 включает реле REL 1 , что позволяет мотору вращаться в прямом направлении. Когда выход переключается в «0», отрывается транзистор Q 3 . Это приводит к замыканию контактов REL 2 , и мотор начинает вращаться в противоположном направлении. Если порт микроконтроллера в высокоимпедансном состоянии, транзисторы Q 1 , Q 2 и Q 3 закрываются, так как напряжение 1 В на базе Q 2 меньше, чем сумма пороговых напряжений база-эмиттерных переходов Q 1 и Q 2 и падения напряжения на диоде D 1 . Оба реле выключаются, и мотор останавливается. Напряжение 1 В можно получить с помощью делителя напряжения или эмиттерного повторителя. Диоды D 2 и D 3 служат для защиты коллекторов Q 1 и Q 2 от бросков напряжения, возникающих при выключении реле. В схеме можно использовать практически любые маломощные NPN и PNP транзисторы. Выбор D 1 также непринципиален.

Схема для управления МОП реле получается проще, поскольку светодиоды можно подключить прямо к выходу практически любого микроконтроллера (Рисунок 2). Логическая «1» включает светодиод реле S 1 , а логический «0» - S 2 , открывая соответствующие выходные симисторы. Когда порт переходит в высокоимпедансное состояние, оба светодиода выключаются, поскольку постоянное напряжение 1.2 В меньше суммы пороговых напряжений двух светодиодов. Варисторы R 3 , R 5 и демпфирующая цепь C 1 , R 4 , C 2 , R 6 служат для защиты МОП реле. Параметры этих элементов выбирают в соответствии с нагрузкой.

Для подключения нагрузки к микроконтроллеру понадобятся следующие вещи:

  • сам микроконтроллер
  • биполярный транзистор NPN типа
  • два резистора R1(500Ом) и R2(5кОм)

Составление схемы подключения нагрузки

Итак. Максимальный ток на вывод микроконтроллера составляет 20мА, напряжение на выходе составляет 5В. К примеру, мы хотим подключить к микроконтроллеру шаговый двигатель постоянного тока с управляющим напряжением 12В, током 200мА. Схема подключения следующая:

Подключение нагрузки к микроконтроллеру

Расчет управляющего транзистора

Раз ток вывода микроконтроллера может составлять максимум 20мА, а получить на нужно 200мА, то необходимо подобрать NPN транзистор с минимальным коэффициентом усиления

hFE = 200мА / 20мА = 10

Вообще говоря, плохим тоном считается выдавать из микрика максимальные 20мА, поэтому давайте рассчитывать на выход 10мА. Итак, настроились на снижение нагрузки на наш микроконтроллер вдвое, теперь будем подбирать транзистор с минимальным коэффициентом

hFE = 200мА / 10мА = 20

В таком случае максимальный ток коллектора, а соответственно и ток нагрузки составит

Ic=Ib*hFE=0,01А*20=0,2А=200мА

Итак, выберем любой подходящий нам транзистор, например буржуйский BC337 .

Характеристики биполярного NPN транзистора BC337 следующие:

  • Vcb max = 50V
  • Vce max = 45V
  • Veb max = 5V
  • Ic max = 0.8A
  • hFE = 100

О, Боже! hFE=100! Это значит, что ток на нагрузке будет равен Ic=0,01*100=1А?

Нет! В этом случае транзистор откроется нараспашку, будет готов выдавать максимально допустимый для него ток 0,8А(см.характеристики выше), но фактически ток в цепи коллектор-эмиттер составит ток потребления двигателя (в нашем случае двигатель «кушает» 200мА).

Расчет ограничительного резистора

В первую очередь нам необходимо подобрать резистор R1 для того, чтобы он ограничивал ток, выходящий из микроконтроллера . Расчет простой: необходимо напряжение питания 5В поделить на максимальный ток базы 10мА

R1 = 5В / 0.01А = 500Ом

Резистор R2 не является нагрузкой , он нужен для того, чтобы после снятия напряжения с базы, остатки тока между микроконтроллером и базой транзистора стравливались на землю. Иначе возможен случай, когда транзистор останется в открытом состоянии после снятия управляющего импульса. Рекомендуемый номинал резистора R2 — в 10 раз больше R1

Привет, Geektimes!

Управление мощными нагрузками - достаточно популярная тема среди людей, так или иначе касающихся автоматизации дома, причём в общем-то независимо от платформы: будь то Arduino, Rapsberry Pi, Unwired One или иная платформа, включать-выключать ей какой-нибудь обогреватель, котёл или канальный вентилятор рано или поздно приходится.

Традиционная дилемма здесь - чем, собственно, коммутировать. Как убедились многие на своём печальном опыте, китайские реле не обладают должной надёжностью - при коммутации мощной индуктивной нагрузки контакты сильно искрят, и в один прекрасный момент могут попросту залипнуть. Приходится ставить два реле - второе для подстраховки на размыкание.

Вместо реле можно поставить симистор или твердотельное реле (по сути, тот же тиристор или полевик со схемой управления логическим сигналом и опторазвязкой в одном корпусе), но у них другой минус - они греются. Соответственно, нужен радиатор, что увеличивает габариты конструкции.

Я же хочу рассказать про простую и довольно очевидную, но при этом редко встречающуюся схему, умеющую вот такое:

  • Гальваническая развязка входа и нагрузки
  • Коммутация индуктивных нагрузок без выбросов тока и напряжения
  • Отсутствие значимого тепловыделения даже на максимальной мощности

Но сначала - чуть-чуть иллюстраций. Во всех случаях использовались реле TTI серий TRJ и TRIL, а в качестве нагрузки - пылесос мощностью 650 Вт.

Классическая схема - подключаем пылесос через обычное реле. Потом подключаем к пылесосу осциллограф (Осторожно! Либо осциллограф, либо пылесос - а лучше оба - должны быть гальванически развязаны от земли! Пальцами и яйцами в солонку не лазить! С 220 В не шутят!) и смотрим.

Включаем:

Пришлось почти на максимум сетевого напряжения (пытаться привязать электромагнитное реле к переходу через ноль - задача гиблая: оно слишком медленное). В обе стороны бабахнуло коротким выбросом с почти вертикальными фронтами, во все стороны полетели помехи. Ожидаемо.

Выключаем:

Резкое пропадание напряжения на индуктивной нагрузке не сулит ничего хорошего - ввысь полетел выброс. Кроме того, видите вот эти помехи на синусоиде за миллисекунды до собственно отключения? Это искрение начавших размыкаться контактов реле, из-за которого они однажды и прикипят.

Итак, «голым» реле коммутировать индуктивную нагрузку плохо. Что сделаем? Попробуем добавить снаббер - RC-цепочку из резистора 120 Ом и конденсатора 0,15 мкФ.

Включаем:

Лучше, но не сильно. Выброс сбавил в высоте, но в целом сохранился.

Выключаем:

Та же картина. Мусор остался, более того, осталось искрение контактов реле, хоть и сильно уменьшившееся.

Вывод: со снаббером лучше, чем без снаббера, но глобально проблемы он не решает. Тем не менее, если вы желаете коммутировать индуктивные нагрузки обычным реле - ставьте снаббер. Номиналы надо подбирать по конкретной нагрузке, но 1-Вт резистор на 100-120 Ом и конденсатор на 0,1 мкФ выглядят разумным вариантом для данного случая.

Литература по теме: Agilent - Application Note 1399, «Maximizing the Life Span of Your Relays ». При работе реле на худший тип нагрузки - мотор, который, помимо индуктивности, при старте имеет ещё и очень низкое сопротивление - добрые авторы рекомендуют уменьшить паспортный ресурс реле в пять раз .

А теперь сделаем ход конём - объединим симистор, симисторный драйвер с детектированием нуля и реле в одну схему.

Что есть на этой схеме? Слева - вход. При подаче на него «1» конденсатор C2 практически мгновенно заряжается через R1 и нижнюю половину D1; оптореле VO1 включается, дожидается ближайшего перехода через ноль (MOC3063 - со встроенной схемой детектора нуля) и включает симистор D4. Нагрузка запускается.

Конденсатор C1 заряжается через цепочку из R1 и R2, на что уходит примерно t=RC ~ 100 мс. Это несколько периодов сетевого напряжения, то есть, за это время симистор успеет включиться гарантированно. Далее открывается Q1 - и включается реле K1 (а также светодиод D2, светящий приятным изумрудным светом). Контакты реле шунтируют симистор, поэтому далее - до самого выключения - он в работе участия не принимает. И не греется.

Выключение - в обратном порядке. Как только на входе появляется «0», C1 быстро разряжается через верхнее плечо D1 и R1, реле выключается. А вот симистор остаётся включённым примерно 100 мс, так как C2 разряжается через 100-килоомный R3. Более того, так как симистор удерживается в открытом состоянии током, то даже после отключения VO1 он останется открытым, пока ток нагрузки не упадёт в очередном полупериоде ниже тока удержания симистора.

Включение:

Выключение:

Красиво, не правда ли? Причём при использовании современных симисторов, устойчивых к быстрым изменениям тока и напряжения (такие модели есть у всех основных производителей - NXP, ST, Onsemi, etc., наименования начинаются с «BTA»), снаббер не нужен вообще, ни в каком виде.

Более того, если вспомнить умных людей из Agilent и посмотреть, как меняется потребляемый мотором ток, получится вот такая картинка:

Стартовый ток превышает рабочий более чем в четыре раза. За первые пять периодов - то время, на которое симистор опережает реле в нашей схеме - ток падает примерно вдвое, что также существенно смягчает требования к реле и продлевает его жизнь.

Да, схема сложнее и дороже, чем обычное реле или обычный симистор. Но часто она того стоит.

В следующих статьях будут устройства, которые должны управлять внешней нагрузкой. Под внешней нагрузкой я понимаю все, что прицеплено к ножкам микроконтроллера – светодиоды, лампочки, реле, двигатели, исполнительные устройства … ну Вы поняли. И как бы не была заезжена данная тема, но, чтобы избежать повторений в следующих статьях, я все-же рискну быть не оригинальным — Вы уж меня простите:). Я кратенько, в рекомендательной форме, покажу наиболее распространенные способы подключения нагрузки (если Вы что-то захотите добавить – буду только рад).
Сразу договоримся, что речь идет о цифровом сигнале (микроконтроллер все-таки цифровое устройство) и не будем отходить от общей логики: 1 -включено, 0 -выключено. Начнем.

Нагрузкой постоянного тока являются: светодиоды, лампы, реле, двигатели постоянного тока, сервоприводы, различные исполнительные устройства и т.д. Такая нагрузка наиболее просто (и наиболее часто) подключается к микроконтроллеру.

1.1 Подключение нагрузки через резистор.
Самый простой и, наверно, чаще всего используемый способ, если речь идет о светодиодах.

Резистор нужен для того, чтобы ограничить ток протекающий, через ножку микроконтроллера до допустимых 20мА . Его называют балластным или гасящим. Примерно рассчитать величину резистора можно зная сопротивление нагрузки Rн.

Rгасящий = (5v / 0.02A) – Rн = 250 – Rн

Как видно, даже в самом худшем случае, когда сопротивление нагрузки равно нулю достаточно 250 Ом для того, что бы ток не превысил 20мА. А значит, если неохота чего-то там считать — ставьте 300 Ом и Вы защитите порт от перегрузки. Достоинство способа очевидно – простота.

1.2 Подключение нагрузки при помощи биполярного транзистора.
Если так случилась, что Ваша нагрузка потребляет более 20мА, то, ясное дело, резистор тут не поможет. Нужно как-то увеличить (читай усилить) ток. Что применяют для усиления сигнала? Правильно. Транзистор!

Для усиления удобней применять n-p-n транзистор, включенный по схеме ОЭ . При таком способе можно подключать нагрузку с большим напряжением питания, чем питание микроконтроллера. Резистор на базе – ограничительный. Может варьироваться в широких пределах (1-10 кОм), в любом случае транзистор будет работать в режиме насыщения. Транзистор может быть любой n-p-n транзистор. Коэффициент усиления, практически не имеет значения. Выбирается транзистор по току коллектора (нужный нам ток) и напряжению коллектор-эмиттер (напряжение которым запитывается нагрузка). Еще имеет значение рассеиваемая мощность — чтоб не перегрелся.

Из распространенных и легко доступных можно заюзать BC546, BC547, BC548, BC549 с любыми буквами (100мА), да и тот-же КТ315 сойдет (это у кого со старых запасов остались).
- Даташит на биполярный транзистор BC547

1.3 Подключение нагрузки при помощи полевого транзистора.
Ну а если ток нашей нагрузки лежит в пределах десятка ампер? Биполярный транзистор применить не получиться, так как токи управления таким транзистором велики и скорей всего превысят 20мА. Выходом может служить или составной транзистор (читать ниже) или полевой транзистор (он же МОП, он же MOSFET). Полевой транзистор просто замечательная штука, так как он управляется не током, а потенциалом на затворе. Это делает возможным микроскопическим током на затворе управлять большими токами нагрузки.

Для нас подойдет любой n-канальный полевой транзистор. Выбираем, как и биполярный, по току, напряжению и рассеиваемой мощности.

При включении полевого транзистора нужно учесть ряд моментов:
— так как затвор, фактически, является конденсатором, то в моменты переключения транзистора через него текут большие токи (кратковременно). Для того чтобы ограничить эти токи в затвор ставиться ограничивающий резистор.
— транзистор управляется малыми токами и если выход микроконтроллера, к которому подключен затвор, окажется в высокоимпедансном Z-состоянии полевик начнет открываться-закрываться непредсказуемо, вылавливая помехи. Для устранения такого поведения ножку микроконтроллера нужно «прижать» к земле резистором порядка 10кОм.
У полевого транзистора на фоне всех его положительных качеств есть недостаток. Платой за управление малым током является медлительность транзистора. ШИМ, конечно, он потянет, но на превышение допустимой частоты он Вам ответит перегревом.

1.4 Подключение нагрузки при помощи составного транзистора Дарлингтона.
Альтернативой применения полевого транзистора при сильноточной нагрузке является применение составного транзистора Дарлингтона. Внешне это такой-же транзистор, как скажем, биполярный, но внутри для управления мощным выходным транзистором используется предварительная усилительная схема. Это позволяет малыми токами управлять мощной нагрузкой. Применение транзистора Дарлингтона не так интересно, как применение сборки таких транзисторов. Есть такая замечательная микросхема как ULN2003. В ее составе аж 7 транзисторов Дарлингтона, причем каждый можно нагрузить током до 500мА, причем их можно включать параллельно для увеличения тока.

Микросхема очень легко подключается к микроконтроллеру (просто ножка к ножке) имеет удобную разводку (вход напротив выхода) и не требует дополнительной обвязки. В результате такой удачной конструкции ULN2003 широко используется в радиолюбительской практике. Соответственно достать ее не составит труда.
- Даташит на сборку Дарлингтонов ULN2003

Если Вам нужно управлять устройствами переменного тока (чаще всего 220v), то тут все сложней, но не на много.

2.1 Подключение нагрузки при помощи реле.
Самым простым и, наверное, самым надежным есть подключение при помощи реле. Катушка реле, сама собой, является сильноточной нагрузкой, поэтому напрямую к микроконтроллеру ее не включишь. Реле можно подключить через транзистор полевой или биполярный или через туже ULN2003, если нужно несколько каналов.

Достоинства такого способа большой коммутируемый ток (зависит от выбранного реле), гальваническая развязка. Недостатки: ограниченная скорость/частота включения и механический износ деталей.
Что-то рекомендовать для применения не имеет смысла — реле много, выбирайте по нужным параметрам и цене.

2.2 Подключение нагрузки при помощи симистора (триака).
Если нужно управлять мощной нагрузкой переменного тока а особенно если нужно управлять мощностью выдаваемой на нагрузку (димеры), то Вам просто не обойтись без применения симистора (или триака). Симистор открывается коротким импульсом тока через управляющий электрод (причем как для отрицательной, так и для положительной полуволны напряжения). Закрывается симистор сам, в момент отсутствия напряжения на нем (при переходе напряжения через ноль). Вот тут начинаются сложности. Микроконтроллер должен контролировать момент перехода через ноль напряжения и в точно определенный момент подавать импульс для открытия симистора — это постоянная занятость контроллера. Еще одна сложность это отсутствие гальванической развязки у симистора. Приходится ее делать на отдельных элементах усложняя схему.


Хотя современные симисторы управляются довольно малым током и их можно подключить напрямую (через ограничительный резистор) к микроконтроллеру, из соображений безопасности приходится их включать через оптические развязывающие приборы. Причем это касается не только цепей управления симистором, но и цепей контроля нуля.

Довольно неоднозначный способ подключения нагрузки. Так как с одной стороны требует активного участия микроконтроллера и относительно сложного схемотехнического решения. С другой стороны позволяет очень гибко манипулировать нагрузкой. Еще один недостаток применения симисторов — большое количество цифрового шума, создаваемого при их работе — нужны цепи подавления.

Симисторы довольно широко используются, а в некоторых областях просто незаменимы, поэтому достать их не составляет каких либо проблем. Очень часто в радиолюбительстве применяют симисторы типа BT138.