Портал о ремонте ванной комнаты. Полезные советы

В каких клетках присутствуют пластиды. Строение и функция лейкопластов в клетке

Пластиды.

Пластиды высших растений бывают 3-х типов. У низших (водорослей, например) они более разнообразны.

    хлоропласты (Хлорос – зеленые) по форме похожи на зерно чечевицы. Поэтому есть название – хлорофилловые зерна. Пигмент хлорофилл придает растениям зеленый цвет.

    Хромопласты – (Хромос –цвет) окрашены различно. Образованы пигментами красного, желтого, оранжевого цвета.

    Лейкопласты (бесцветные).

Хлоропласты находятся в зеленых частях растений. Все пластиды всегда находятся только в цитоплазме растительных клеток. Ни в вакуолях, ни в оболочке пластид не бывает. Цитоплазма – часть протопласта. В виде геля или золя. Состоит из живой части и органоидов: кристаллические белковые зерна, мембранные системы. Основной органоид – ядро. Хлоропласты по консистенции полужидкие, в них происходит фотосинтез.

Фотосинтез – сложный биохимический процесс, комплекс биохимических реакций. Суммарное уравнение фотосинтеза –

6Н 2 0+6СО 2 + h→С 6 Н 12 О 6 + 6О 2 .

Фотосинтез – многоступенчатый процесс. Переносчик ē – цитохромы С. Роль фотосинтеза – космическая. Ее трудно переоценить. В результате фотосинтеза ежегодно образуется 400 млрд тонн органических веществ. При этом связывается в процессе фотоситеза 160 млрд тонн углевода. К счастью, столько же органических веществ и разлагается в результате жизнедеятельности человека, животных, микроорганизмов. Микроорганизмы возвращают в атмосферу СО 2 . Иначе планета была бы завалена неразложенной органикой, истощили запас углекислого газа, которого в атмосфере 0,3 – 0,03%.

Масса растений в 220 раз больше массы всех животных. В фундаменте цепей питания находятся растения. Однако по количеству видов растения значительно уступают. Насекомых более 1 млн видов. Всех растений – 500 тыс видов.

Строение хлоропласта.

Хлоропласт представляет собой двойную белково – липоидную мембрану. Двойная мембрана есть еще только у митохондрий, у остальных органелл – одинарная. Тело хлоропласта – строма, полужидкая. В нее погружены различные мембранные структуры. Их 2 типа: плоские дисковидные мешочки, уложенные стопочками – граны. На мембранах гран находится пигмент хлорофилл – источник энергии для фотосинтеза. Граны связаны между собой более узкими мембранами – тилакоидами стромы. Не имеют форму дисков. Их совокупность образует единую систему. Синтез органических веществ происходит в строме. Кроме хлорофилла есть и другие пигменты – красный – каротин, желтый – ксантофилл, их меньше, чем хлорофиллов.

Кроме пигментов содержится ДНК – вещество наследственности, РНК – посредник в переносе наследственной информации, рибосомы. Причем, синтез белка в хлоропластах не зависит от ядерной ДНК. Если белок синтезируется, то он присутствует в биосинтезе.

Внутри стромы находятся шаровидные образования, крахмалистые – результат фотосинтеза, трансформируется в другие части клетки.

Хромопласты – имеют различные оттенки красного, желтого, оранжевого цветов и находятся в ярко – окрашенных частях растений. Например, лепестки цветов, поды, корнеплоды – хромопласты придают им яркую окраску. Форма хромопластов неодинакова даже в пределах одной клетки. Зрелые хромопласты – твердые. Цвет зависит от соотношения каротина и ксантофилла. Т.к. эти пигменты откладываются в виде кристаллов, то их различное взаиморасположение придает различную форму пластидам. Роль хромопластов заключается в том, что яркая окраска венчиков привлекает насекомых – опылителей. Яркие плоды – привлекательны для животных, распространяющих семена. Хромопласты содержатся в корнеплодах. Морковь, содержит каротин = провитамин А. В плодах шиповника, рябины, яркие румяные яблоки, желтые лютики, оранжевые настурции, летнее разнотравье – результат присутствия хромопластов. Плоды вишни, сливы окрашены антоцианом клеточного сока. Белые венчики результат отсутствия пигментов, или наличия лейкопластов. Тем не менее, белые душистые цветки ландыша в хвойном лесу привлекают насекомых ярким белым пятном.

Лейкопласты – бесцветные. Располагаются в таких частях растений как кожица листьев, корневища, корни, корнеплоды, клубни картофеля. Не имеют пигментов, поэтому бесцветные. С трудом наблюдаются в микроскоп. Роль лейкопластов – накопление питательных веществ, увеличение размеров, определяют форму, тогда их называют по веществам: если накапливается крахмал, то образуются крахмальные зерна = амилопласты; если масло в виде капель = олеинопласты (элайопласты); если белки = называются протеинопласты-белковые зерна.

Форма лейкопластов – видовой признак.

Все пластиды имеют общее происхождение, поэтому могут превращаться друг в друга. Например, осеннее изменение окраски листьев – хлоропласты превращаются в хромопласты. При понижении температуры распад хлорофилла происходит быстрее, чем распад каротиноидов. Позеленение бесцветного ростка (глазки картофеля) – лейкопласты переходят в хлоропласты. Хромопласты – конечный продукт превращения. Хромопласты не могут превращаться в другие структуры. Яблоки, шиповник превращаются из зеленых в красные – аналогичный процесс взаимоперехода пластид. Если зеленые побеги держать в темноте, то они светлеют.

Пластиды не могут синтезироваться из других веществ.

Гетеротрофы питались фаго- или пиноцитозом. Полагают, что при встрече клеток гетеротрофов и цианобактерий образовывались пищеварительные вакуоли, клетки переваривались, а питательные вещества использовались гетеротрофами. Поскольку в результате попадала часть веществ фотосинтеза, то постепенно перестраивались биохимические процессы. Такой симбиоз был выгоден для обоих организмов. Гетеротрофы получали органические вещества, а синезеленые водоросли – постоянство среды, защиту, углекислый газ, воду. В пользу этой гипотезы говорит двойная мембрана. Одна мембрана – принадлежность бактерии,– пищеварительной вакуоли гетеротрофа, а другая – оболочка сине-зеленой водоросли. Митохондрии имеют также симбиотическое происхождение.

Доказательством этой гипотезы служит автономное поведение хлоропластов внутри клеток, собственная биосинтетическая система. Размножение делением независимо от ядра клетки.

Недостаток теории: сине-зеленые водоросли способны к самостоятельному существованию на примитивном уровне. У современных – другой биохимический состав, другие пигменты, хлорофилл, другие запасные питательные вещества, не образуется крахмал.

Со школьной скамьи. В курсе ботаники говорится, что в растительных клетках пластиды могут быть разных форм, размеров и выполняют в клетке различные функции. Эта статья напомнит о структуре пластид, их видах и функциях тем, кто давно окончил школу, и будет полезна всем, кто интересуется биологией.

Строение

На картинке внизу схематически представлено строение пластидов в клетке. Независимо от ее вида, у нее есть внешняя и внутренняя мембрана, выполняющие защитную функцию, строма - аналог цитоплазмы, рибосомы, молекула ДНК, ферменты.

В хлоропластах присутствуют особые структуры - граны. Граны формируются из тилакоидов - структур, похожих на диски. Тилакоиды принимают участие в и кислорода.

В хлоропластах в результате фотосинтеза формируются крахмальные зерна.

Лейкопласты не пигментированы. В них не присутствуют тилакоиды, они не принимают участия в фотосинтезе. Большая часть лейкопластов сконцентрирована в стебле и корне растения.

Хромопласты имеют в своем составе липидные капли - структуры, содержащие липиды, необходимые для снабжения структуры пластид дополнительной энергией.

Пластиды могут быть разных цветов, размеров и форм. Размеры их колеблются в пределах 5-10 мкм. Форма обычно овальная или круглая, но может быть и любой другой.

Виды пластид

Пластиды могут быть бесцветными (лейкопласты), зелеными (хлоропласты), желтыми или оранжевыми (хромопласты). Именно хлоропласты придают листьям растений зеленую окраску.

Другая разновидность отвечает за желтую, красную или оранжевую окраску.

Бесцветные пластиды в клетке выполняют функцию хранилища питательных веществ. В лейкопластах содержатся жиры, крахмал, белки и ферменты. Когда растение нуждается в дополнительной энергии, крахмал расщепляется на мономеры - глюкозу.

Лейкопласты при определенных условиях (под действием солнечного света или при добавлении химических веществ) могут превращаться в хлоропласты, хлоропласты преобразуются в хромопласты, когда хлорофилл разрушается, и в окраске начинают преобладать красящие пигменты хромопластов - каротин, антоциан или ксантофилл. Это превращение заметно осенью, когда листья и многие плоды меняют цвет из-за разрушения хлорофилла и проявления пигментов хромопластов.

Функции

Как говорилось выше, пластиды могут быть разными, и их функции в растительной клетке зависят от разновидности.

Лейкопласты служат в основном для хранилища питательных веществ и поддержания жизнедеятельности растения за счет способности запасать и синтезировать белки, липиды, ферменты.

Хлоропласты играют ключевую роль в процессе фотосинтеза. При участии сконцентрированного в пластидах пигмента хлорофилла происходит преобразование углекислого газа и молекул воды в молекулы глюкозы и кислорода.

Хромопласты благодаря яркой окраске привлекают насекомых для опыления растений. Исследование функций этих пластид до сих пор продолжается.

Пластиды являются основными цитоплазматическими органеллами клеток автотрофных растений. Название происходит от греческого слова «plastos», что в переводе означает «вылепленный».
Главная функция пластид – синтез органических веществ, благодаря наличию собственных ДНК и РНК и структур белкового синтеза. В пластидах также содержатся пигменты, обусловливающие их цвет. Все виды данных органелл имеют сложное внутреннее строение. Снаружи пластиду покрывают две элементарные мембраны, имеется система внутренних мембран, погруженных в строму или матрикс.
Классификация пластид по окраске и выполняемой функции подразумевает деление этих органоидов на три типа: хлоропласты, лейкопласты и хромопласты. Пластиды водорослей именуются хроматофорами.
Хлоропласты – это зеленые пластиды высших растений, содержащие хлорофилл – фотосинтезирующий пигмент. Представляют собой тельца округлой формы размерами от 4 до 10 мкм. Химический состав хлоропласта: примерно 50% белка, 35% жиров, 7% пигментов, малое количество ДНК и РНК. У представителей разных групп растений комплекс пигментов, определяющих окраску и принимающих участие в фотосинтезе, отличается. Это подтипы хлорофилла и каротиноиды (ксантофилл и каротин). При рассматривании под световым микроскопом видна зернистая структура пластид – это граны. Под электронным микроскопом наблюдаются небольшие прозрачные уплощенные мешочки (цистерны, или граны), образованные белково-липидной мембраной и располагающиеся в непосредственно в строме. Причем некоторые из них сгруппированы в пачки, похожие на столбики монет (тилакоиды гран), другие, более крупные находятся между тилакоидами. Благодаря такому строению, увеличивается активная синтезирующая поверхность липидно-белково-пигментного комплекса гран, в котором на свету происходит фотосинтез.
Хромопласты – пластиды, окраска которых бывает желтого, оранжевого или красного цвета, что обусловлено накоплением в них каротиноидов. Благодаря наличию хромопластов, характерную окраску имеют осенние листья, лепестки цветов, созревшие плоды (помидоры, яблоки). Данные органоиды могут быть различной формы – округлой, многоугольной, иногда игольчатой.
Лейкопласты представляют собой бесцветные пластиды, основная функция которых обычно запасающая. Размеры этих органелл относительно небольшие. Они округлой либо слегка продолговатой формы, характерны для всех живых клеток растений. В лейкопластах осуществляется синтез из простых соединений более сложных – крахмала, жиров, белков, которые сохраняются про запас в клубнях, корнях, семенах, плодах. Под электронным микроскопом заметно, что каждый лейкопласт покрыт двухслойной мембраной, в строме есть только один или небольшое число выростов мембраны, основное пространство заполнено органическими веществами. В зависимости от того, какие вещества накапливаются в строме, лейкопласты делят на амилопласты, протеинопласты и элеопласты.

74. Каково строение ядра, роль в клетке? Какие структуры ядра обуславливают его функции? Что такое хроматин?

Ядро – основной компонент клетки, несущей генетическую информации Ядро – располагается в центре. Форма различная, но всегда круглая или овальная. Размеры различны. Содержимое ядра – жидкая консистенция. Различают оболочку, хроматин, кариолимфу (ядерный сок), ядрышко. Ядерная оболочка состоит из 2 мембран, разделённых перенуклеарным пространством. Оболочка снабжена порами, через которые происходит обмен крупными молекулами различных веществ. Оно может находиться в 2 состояниях: покоя – интерфазы и деления – митоза или мейоза.

Ядро осуществляет две группы общих функций: одну, связанную собственно с хранением генетической информации, другую - с ее реализацией, с обеспечением синтеза белка.

В первую группу входят процессы, связанные с поддержанием наследственной информации в виде неизменной структуры ДНК. Эти процессы связаны с наличием так называемых репарационных ферментов, ликвидирующих спонтанные повреждения молекулы ДНК (разрыв одной из цепей ДНК, часть радиационных повреждений), что сохраняет строение молекул ДНК практически неизменным в ряду поколений клеток или организмов. Далее, в ядре происходит воспроизведение или редупликация молекул ДНК, что дает возможность двум клеткам получить совершенно одинаковые и в качественном и в количественном смысле объемы генетической информации. В ядрах происходят процессы изменения и рекомбинации генетического материала, что наблюдается во время мейоза (кроссинговер). Наконец, ядра непосредственно участвуют в процессах распределения молекул ДНК при делении клеток.

Другой группой клеточных процессов, обеспечивающихся активностью ядра, является создание собственно аппарата белкового синтеза. Это не только синтез, транскрипция на молекулах ДНК разных информационных РНК и рибосомных РНК. В ядре эукариотов происходит также образование субъедениц рибосом путем комплексирования синтезированных в ядрышке рибосомных РНК с рибосомными белками, которые синтезируются в цитоплазме и переносятся в ядро.



Таким образом, ядро представляет собой не только вместилище генетического материала, но и место, где этот материал функционирует и воспроизводится. Поэтому выпадение лил нарушение любой из перечисленных выше функций губительно для клетки в целом. Так нарушение репарационных процессов будет приводить к изменению первичной структуры ДНК и автоматически к изменению структуры белков, что непременно скажется на их специфической активности, которая может просто исчезнуть или измениться так, что не будет обеспечивать клеточные функции, в результате чего клетка погибает. Нарушения редупликации ДНК приведут к остановке размножения клеток или к появлению клеток с неполноценным набором генетической информации, что также губительно для клеток. К такому же результату приведет нарушение процессов распределения генетического материала (молекул ДНК) при делении клеток. Выпадение в результате поражения ядра или в случае нарушений каких-либо регуляторных процессов синтеза любой формы РНК автоматически приведет к остановке синтеза белка в клетке или к грубым его нарушениям.
Хроматин (греч. χρώματα - цвета, краски) - это вещество хромосом - комплекс ДНК, РНК и белков. Хроматин находится внутри ядра клеток эукариот и входит в состав нуклеоида у прокариот. Именно в составе хроматина происходит реализация генетической информации, а также репликация и репарация ДНК.

75. Каково строение и типы хромосом? Что такое кариотип, аутосомы, гетеросомы, диплоидный и гаплоидный наборы хромосом?

Хромосомы – органоиды клеточного ядра, совокупность которых определяет основные наследственные свойства клеток и организмов. Полный набор хромосом в клетке, характерный для данного организма, называется кариотипом. В любой клетке тела большинства животных и растений каждая хромосома представлена дважды: одна из них получена от отца, другая – от матери при слиянии ядер половых клеток в процессе оплодотворения. Такие хромосомы называются гомологичными, набор гомологичных хромосом – диплоидным. В хромосомном наборе клеток раздельнополых организмов присутствует пара (или несколько пар) половых хромосом, как правило, различающихся у разных полов по морфологическим признакам; остальные хромосомы называются аутосомами. У млекопитающих в половых хромосомах локализованы гены, определяющие пол организма.
Значение хромосом как клеточных органоидов, ответственных за хранение, воспроизведение и реализацию наследственной информации, определяется свойствами биополимеров, входящих в их состав.
Аутосомами у живых организмов с хромосомным определением пола называют парные хромосомы, одинаковые у мужских и женских организмов. Иными словами, кроме половых хромосом, все остальные хромосомы у раздельнополых организмов будут являться аутосомами.
Аутосомы обозначают порядковыми номерами. Так, у человека в диплоидном наборе имеется 46 хромосом, из них - 44 аутосомы (22 пары, обозначаемые номерами с 1-го по 22-й) и одна пара половых хромосом (XX у женщин и XY у мужчин).
Гаплоидный набор хромосом Начнем с гаплоидного. Он представляет собой скопление совершенно разных хромосом, т.е. в организме-гаплоиде есть несколько этих нуклеопротеидных структур, непохожих друг на друга (фото). Гаплоидный набор хромосом характерен для растений, водорослей и грибов. Диплоидный набор хромосом Этот набор является таким собранием хромосом, при котором у каждой из них есть двойник, т.е. эти нуклепротеидные структуры расположены попарно (фото). Диплоидный набор хромосом характерен для всех животных, в том числе и человека. Кстати, о последнем. У здорового человека их 46, т.е. 23 пары. Однако его пол определяют всего две, называемые половыми, - Х и Y- Читайте подробнее на SYL.ru:

76. Дайте определение клеточного цикла, охарактеризуйте его фазы. Какие функции жизни обеспечиваются делением клеток?

Клеточный цикл - это период существования клетки от момента её образования путем деления материнской клетки до собственного деления или гибели.

Клеточный цикл эукариот состоит из двух периодов:
1Период клеточного роста, называемый «интерфаза», во время которого идет синтез ДНК и белков и осуществляется подготовка к делению клетки.

2Периода клеточного деления, называемый «фаза М» (от слова mitosis - митоз).

Деление клетки. Рост организма осуществляется за счет деления его клеток. Способность к делению - важнейшее свойство клеточной жизнедеятельности. Делясь, клетка удваивает все свои структурные компоненты, и в результате возникают две новые клетки. Наиболее распространенным способом деления клетки является митоз - непрямое деление клетки.

В данной статье мы подробно рассмотрим, что такое пластиды. Все автотрофные растения имеют основные цитоплазматические органеллы, именуемые пластидами. Свое название они получили от греческого - plastos, что в переводе на русский язык означает "вылепленный".

Итак, что такое пластиды? Каковы их функции? На эти вопросы вы сможете найти ответ, прочитав статью до конца. Для начала выделим основную функцию этих органелл - синтез органических веществ. Все пластиды содержат свой некий пигмент, который и определяет их цвет. Если делить их по этому качеству, то можно назвать следующие три группы:

  • хлоропласты;
  • хромопласты;
  • лейкопласты.

Значение

Давайте теперь выясним, какое же имеют значение для жизни растений пластиды. Значения их в фотосинтезе отрицать нельзя, однако кроме этого, есть и другие важные аспекты. Так, среди них выделяют:

  • восстановление нитрита и сульфата;
  • синтез метаболитов (сюда можно отнести такие, как - пурины, аминокислоты, жирные кислоты и так далее);
  • синтез АБК, гиббереллинов и так далее (то есть регуляторных молекул);
  • запасающая функция (железо, липиды, крахмал).

Все пластиды, которые имеются у высших растений, разнообразны и каждая их них выполняет свою определенную функцию. А их набор напрямую зависит от типа клетки.

Пропластиды

Мы разобрали, что такое пластиды. Теперь перейдем к характеристике каждого отдельного вида. Первыми в нашем списке оказались пропластиды.

По сравнению с дифференцированными пластидами, пропластиды имеют меньшие размеры (до 1 мкм), их мембранная система слабо развита (меньше рибосом). Они имеют отложения фитоферритина, функция которых заключается в хранении железа.

Лейкопласты

Пластиды данного вида не имеют цвета. Лейкопласты выполняют одну очень важную функцию - запасающую. Они имеют небольшие размеры и содержатся во всех клетках растений. Благодаря лейкопластам, воспроизводятся следующие сложные соединения:

  • крахмал;
  • жиры;
  • белки.

Все они запасаются в различных частях растения (клубнях, плодах, семенах). Названные пластиды подразделяются на три вида по признаку накапливания вещества:

  • амилопласты;
  • протеинопласты;
  • элеопласты.

Рассказывая, что такое пластиды, мы остановимся на первом виде лейкопластов.

Амилопласты

Все пластиды в биологии имеют большое значение. Они способны переходить из одного вида в другой. Ярким примером является перевоплощение лейкопластов в хлоропласты. Последние имеют зеленый цвет. Многие замечали, что клубни картофеля на свету зеленеют, это как раз и происходит из-за перехода лейкопластов в хлоропласты. А почему осенью желтеют листья? Все просто, хлоропласты переходят в хромопласты из-за разрушения в первых хлорофилла.

Внешне амилопласты похожи на пропластиды. Они способны переходить в следующие формы:

  • хлоропласты;
  • хромопласты.

Их можно обнаружить в запасающих органах растений.

Этиопласты

Эти пластиды принято называть темновыми. Они являются хлоропластами, которые лишены солнечного цвета. Многие замечали, что цветы, растущие в тени, имеют желтоватый оттенок листьев. Это говорит о том, что у растения высока концентрация этиопластов.

Если растение, росшее при солнечном свете переставить в тень, то хлоропласты начнут постепенно превращаться в этиопласты. Чем последних больше, тем мутнее и болезненнее выглядит растение.

Хлоропласты

Эти пластиды наиболее популярны в мире растений. Их цвет - зеленый, а размеры достигают 10 мкм. Основная функция хлоропластов - это фотосинтез. Внешне данный вид пластид похож на мешочки или тельца округлой формы. В их состав входят:

  • белки;
  • жиры;
  • пигменты;

Здесь еще важно отметить и то, что в различных организмах количество, строение и размеры данных пластид отличаются.

Хромопласты

Окраска хромопластов немного разнообразнее. Они могут быть желтыми, оранжевыми, красными.

Такое разнообразие цвета объясняется накоплением каротиноидов. Благодаря наличию этих органелл у растений, мы видим роскошную палитру красок у осенних деревьев, можем отличить созревший плод (яблоки, томаты) от недозревшего. Оттенки у цветочных лепестков также зависят от данных органелл.

Хромопласты могут принимать разнообразное строение - круга, многоугольника, иметь игольчатую форму.

Строение пластид: 1 - наружная мембрана; 2 - внутренняя мембрана; 3 - строма; 4 - тилакоид; 5 - грана; 6 - ламеллы; 7 - зерна крахмала; 8 - липидные капли.

Пластиды характерны только для растительных клеток. Различают три основных типа пластид : лейкопласты - бесцветные пластиды в клетках неокрашенных частей растений, хромопласты - окрашенные пластиды обычно желтого, красного и оранжевого цветов, хлоропласты - зеленые пластиды.

Хлоропласты. В клетках высших растений хлоропласты имеют форму двояковыпуклой линзы. Длина хлоропластов колеблется в пределах от 5 до 10 мкм, диаметр - от 2 до 4 мкм. Хлоропласты ограничены двумя мембранами. Наружная мембрана (1) гладкая, внутренняя (2) имеет сложную складчатую структуру. Наименьшая складка называется тилакоидом (4). Группа тилакоидов, уложенных наподобие стопки монет, называется граной (5). В хлоропласте содержится в среднем 40–60 гран, расположенных в шахматном порядке. Граны связываются друг с другом уплощенными каналами - ламеллами (6). В мембраны тилакоидов встроены фотосинтетические пигменты и ферменты, обеспечивающие синтез АТФ. Главным фотосинтетическим пигментом является хлорофилл, который и обусловливает зеленый цвет хлоропластов.

Внутреннее пространство хлоропластов заполнено стромой (3). В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты цикла Кальвина, зерна крахмала (7). Внутри каждого тилакоида находится протонный резервуар, происходит накопление Н + . Хлоропласты, также как митохондрии, способны к автономному размножению путем деления надвое. Они содержатся в клетках зеленых частей высших растений, особенно много хлоропластов в листьях и зеленых плодах. Хлоропласты низших растений называют хроматофорами.

Функция хлоропластов: фотосинтез. Полагают, что хлоропласты произошли от древних эндосимбиотических цианобактерий (теория симбиогенеза). Основанием для такого предположения является сходство хлоропластов и современных бактерий по ряду признаков (кольцевая, «голая» ДНК, рибосомы 70S-типа, способ размножения).

Лейкопласты. Форма варьирует (шаровидные, округлые, чашевидные и др.). Лейкопласты ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя образует малочисленные тилакоиды. В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты синтеза и гидролиза запасных питательных веществ. Пигменты отсутствуют. Особенно много лейкопластов имеют клетки подземных органов растения (корни, клубни, корневища и др.). Функция лейкопластов: синтез, накопление и хранение запасных питательных веществ. Амилопласты - лейкопласты, которые синтезируют и накапливают крахмал, элайопласты - масла, протеинопласты - белки. В одном и том же лейкопласте могут накапливаться разные вещества.



Хромопласты. Ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя или также гладкая, или образует единичные тилакоиды. В строме имеются кольцевая ДНК и пигменты - каротиноиды, придающие хромопластам желтую, красную или оранжевую окраску. Форма накопления пигментов различная: в виде кристаллов, растворены в липидных каплях (8) и др. Содержатся в клетках зрелых плодов, лепестков, осенних листьев, редко - корнеплодов. Хромопласты считаются конечной стадией развития пластид.

Функция хромопластов: окрашивание цветов и плодов и тем самым привлечение опылителей и распространителей семян.

Все виды пластид могут образовываться из пропластид. Пропластиды - мелкие органоиды, содержащиеся в меристематических тканях. Поскольку пластиды имеют общее происхождение, между ними возможны взаимопревращения. Лейкопласты могут превращаться в хлоропласты (позеленение клубней картофеля на свету), хлоропласты - в хромопласты (пожелтение листьев и покраснение плодов). Превращение хромопластов в лейкопласты или хлоропласты считается невозможным.