Портал о ремонте ванной комнаты. Полезные советы

Как определить тип гибридизации алгоритм. Гибридизация атомных орбиталей углерода

Для объяснения фактов, когда атом образует большее число связей, чем число неспаренных электронов в его основном состоянии (например, атом углерода), используется постулат о гибридизации близких по энергии атомных орбиталей. Гибридизация АО происходит при образовании ковалентной связи , если при этом достигается более эффективное перекрывание орбиталей. Гибридизация атома углерода сопровождается его возбуждением и переносом электрона с 2s - на 2р -АО:

Основное и возбужденное состояния атома углерода.

Гибридизация АО - это взаимодействие (смешение) разных по типу, но близких по энергии атомных орбиталей данного атома с образованием гибридных орбиталей одинаковой формы и энергии.

Например, смешение 2s-АО с 2p -АО дает две гибридные 2sp -АО:

АО с большой разницей в энергии (например, 1s и 2р ) в гибридизацию не вступают. В зависимости от числа участвующих в гибридизации p -АО возможны следующие виды гибридизации:

для атомов углерода и азота - sp 3 , sp 2 и sp ;

для атома кислорода - sp 3 , sp 2 ;

для галогенов - sp 3 .

Гибридная АО асимметрична и сильно вытянута в одну сторону от ядра (форма неправильной восьмерки).

В отличие от негибридных s - или р -АО, она имеет одну большую долю, которая хорошо образует химическую связь, и малую долю, которую обычно даже не изображают. Гибридизованные АО при взаимодействии с орбиталями различных типов (s -, р - или гибридными АО) других атомов обычно дают s-МО, т.е. образуют s-связи. Такая связь прочнее связи, образованной электронами негибридных АО, за счет более эффективного перекрывания.

3.3.1. sp 3 -Гибридизация (тетраэдрическая).

Одна s - и три р четыре равноценные по форме и энергии sp 3 -гибридные орбитали.

Орбитальная модель атома в sp 3 -гибридизованном состоянии.

Для атома углерода и других элементов 2-го периода этот процесс происходит по схеме:

2s + 2p x + 2p y + 2p z = 4 (2sp 3)

Схема sp 3 -гибридизации атомных орбиталей.

Оси sp 3 -гибридных орбиталей направлены к вершинам правильного тетраэдра. Тетраэдрический угол между ними равен 109°28", что соответствует наименьшей энергии отталкивания электронов.



Впервые идею о направленности единиц сродства (валентностей) атома углерода по углам тетраэдра независимо друг от друга выдвинули в 1874 г. Вант-Гофф и Ле Бель.

sp 3 -Орбитали могут образовывать четыре s-связи с другими атомами или заполняться неподеленными парами электронов.

А как наглядно изобразить пространственное строение атома в sp 3 -состоянии на рисунке?

В этом случае sp 3 -гибридные орбитали изображают не электронными облаками, а прямыми линиями или клиньями в зависимости от пространственной ориентации орбитали. Такое схематическое изображение используется при написании стереохимических (пространственных) формул молекул.

Переход от орбитальной модели (а) к пространственной формуле (б).

На примере молекулы метана показаны объемные модели и пространственная (стереохимическая) формула молекулы с sp 3 -углеродным атомом.

Модель молекулы метана

sp 3 -Гибридизованное состояние свойственно атому, если сумма числа связанных с ним атомов и числа его неподеленных электронных пар равна 4.

Углерод в sp 3 -гибридном состоянии встречается в простом веществе - алмазе. Это состояние характерно для атомов С, N, O и др., соединенных с другими атомами одинарными связями (sp 3 -атомы выделены красным цветом):

С H 4 , RC H 3 , N H 3 , RN H 2 , H 2 O , RO H, R 2 O ;

а также анионам типа:

R 3 C : - , RO - .

Следствием тетраэдрического строения sp 3 -атома является возможность существования двух оптических стереоизомеров у соединения, содержащего такой атом с четырьмя разными заместителями (Вант-Гофф, Ле Бель, 1874).

3.3.2. sp 2 -Гибридизация (плоскостно-тригональная).

Одна s - и две p -орбитали смешиваются, и образуются три равноценные sp 2 -гибридные орбитали, расположенные в одной плоскости под углом 120° (выделены синим цветом). Они могут образовывать три s-связи. Третья р -орбиталь остается негибридизованной и ориентируется перпендикулярно плоскости расположения гибридных орбиталей. Эта р -АО участвует в образовании p-связи.

Для элементов 2-го периода процесс sp 2 -гибридизации происходит по схеме:

2s + 2p x + 2p y = 3 (2sp 2) 2p z -АО в гибридизации не участвует.

Для изображения пространственного строения атомов в sp 2 -состоянии используются те же приемы, что и в случае sp 3 -атомов:

Переход от орбитальной модели атома в sp 2 -гибридизированном состоянии (а) к пространственной формуле (б). Строение молекул с sp 2 -атомами отражают их модели:

Модели молекулы этилена

sp 2 -Гибридизованное состояние свойственно атому, если сумма числа связанных с ним атомов и числа его неподеленных электронных пар равна 3

Углерод в sp 2 -гибридном состоянии образует простое вещество графит. Это состояние характерно для атомов С, N, O и др. с двойной связью (sp 2 -атомы выделены красным цветом):

H 2 C =C H 2 , H 2 C =C HR, R 2 C =N R, R-N =N -R, R 2 C =O , R-N =O ,

а также для катионов типа

R 3 C + и свободных радикалов R 3 C · .

Метод валентных связей позволяет наглядно объяснить пространственные характеристики многих молекул. Однако, привычного представления о формах орбиталей не достаточно для ответа на вопрос, почему при наличии у центрального атома разных – s , p , d – валентных орбиталей, образованные им связи в молекулах с одинаковыми заместителями оказываются эквивалентными по своим энергетическим и пространственным характеристикам. В двадцатые годы XIX века Лайнусом Полингом была предложена концепция гибридизации электронных орбиталей. Под гибридизацией понимают абстрактную модель выравнивания атомных орбиталей по форме и энергии.

Примеры формы гибридных орбиталей представлены в таблице 5.

Таблица 5. Гибридные sp, sp 2 , sp 3 орбитали

Концепцию гибридизации удобно использовать при объяснении геометрической формы молекул и величины валентных углов (примеры заданий 2– 5).

Алгоритм определения геометрии молекул методом ВС:

а. Определить центральный атом и количество σ-связей с концевыми атомами.

б. Составить электронные конфигурации всех атомов, входящих в состав молекулы и графические изображения внешних электронных уровней.

в. Согласно принципам метода ВС на образование каждой связи нужна пара электронов, в общем случае, по одному от каждого атома. Если неспаренных электронов центральному атому недостаточно, следует предположить возбуждение атома с переходом одного из пары электронов на более высокий энергетический уровень.

г. Предположить необходимость и тип гибридизации с учетом всех связей и, для элементов первого периода, неспаренных электронов.

д. Опираясь на вышеизложенные умозаключения изобразить электронные орбитали (гибридные или нет) всех атомов в молекуле и их перекрывание. Сделать вывод о геометрии молекулы и приблизительной величине валентных углов.

е. Определить степень полярности связи исходя из значений электроотрицательностей атомов (табл.6) Определить наличие дипольного момента исходя из расположения центров тяжести положительного и отрицательного зарядов и/или симметрии молекулы.

Таблица 6. Значения электроотрицательности некоторых элементов по Полингу


Примеры заданий

Задание 1 . Опишите методом ВС химическую связь в молекуле СО.

Решение (рис.25)

а. Составить электронные конфигурации всех атомов, входящих в состав молекулы.

б. Для образования связи необходимо создать обобществленные электронные пары

Рисунок 25. Схема образования связи в молекуле СО (без гибридизации орбиталей)

Вывод: В молекуле СО – тройная связь С≡О

Для молекулы СО можно предположить наличие sp -гибридизации орбиталей обоих атомов (рис.26). Спаренные электроны, не участвующие в образовании связи находятся на sp -гибридной орбитали.

Рисунок 26. Схема образования связи в молекуле СО (с учетом гибридизации орбиталей)

Задание 2. На основе метода ВС предположить пространственное строение молекулы BeH 2 и определить является ли молекула диполем.

Решение задачи представлено в таблице 7.

Таблица 7. Определение геометрии молекулы BeH 2

Электронная конфигурация Примечания
а. Центральный атом – бериллий. Ему необходимо образовать две ϭ-связи с атомами водорода
б. H: 1s 1 Be: 2s 2 У атома водорода есть неспаренный электрон, у атома бериллия все электроны спарены, его необходимо перевести в возбужденное состояние
в. H: 1s 1 Be*: 2s 1 2p 1 Если бы один атом водорода связывался с бериллием за счет 2s -электрона бериллия, а другой – за счет 2p -электрона бериллия, то молекула не обладала бы симметрией, что энергетически не оправдано, а связи Be–Н не были бы равноценными.
г. H: 1s 1 Be*: 2(sp ) 2 Следует предположить наличие sp -гибридизации
д. Две sp -гибридные орбитали располагаются под углом 180°, молекула BeH 2 – линейная
е. Электроотицательности χ Н =2,1, χ Be =1,5, следовательно связь ковалентная полярная, электронная плотность смещена к атому водорода, на нем появляется небольшой отрицательный заряд δ–. На атоме бериллия δ+. Так как центры тяжести положительного и отрицательного заряда совпадают (она симметрична), молекула не является диполем.

Аналогичные рассуждения помогут описать геометрию молекул с sp 2 - и sp 3 -гибридными орбиталями (табл.8).

Таблица 8. Геометрия молекул BF 3 и СН 4

Задание 3. На основе метода ВС предположить пространственное строение молекулы H 2 О и определить является ли молекула диполем. Возможно два решения, они представлены в таблицах 9 и 10.

Таблица 9. Определение геометрии молекулы H 2 O (без гибридизации орбиталей)

Электронная конфигурация Графическое изображение орбиталей внешнего уровня Примечания
а.
б. H: 1s 1 O: 2s 2 2p 4
в. Неспаренных электронов достаточно для образования двух ϭ-связей с атомами водорода.
г. Гибридизацией можно пренебречь
д.
е.

Таким образом, молекула воду, должна иметь валентный угол около 90°. Однако угол между связями примерно 104°.

Это можно объяснить

1) отталкиванием, близко расположенных друг к другу водородных атомов.

2) Гибридизацией орбиталей (табл. 10).

Таблица 10. Определение геометрии молекулы H 2 O (с учетом гибридизации орбиталей)

Электронная конфигурация Графическое изображение орбиталей внешнего уровня Примечания
а. Центральный атом – кислород. Ему необходимо образовать две ϭ-связи с атомами водорода.
б. H: 1s 1 O: 2s 2 2p 4 У атома водорода есть неспаренный электрон, у атома кислорода два неспаренных электрона.
в. У атома водорода есть неспаренный электрон, у атома кислорода два неспаренных электрона.
г. Угол в 104° позволяет предположить наличие sp 3 -гибридизации.
д. Две sp 3 -гибридные орбитали располагаются под углом примерно 109°, молекула H 2 O по форме близка к тетраэдру, уменьшение валентного угла объясняется влиянием электронной не связывающей пары.
е. Электроотицательности χ Н =2,1, χ О =3,5, следовательно связь ковалентная полярная, электронная плотность смещена к атому кислорода, на нем появляется небольшой отрицательный заряд 2δ– На атоме водорода δ+. Так как центры тяжести положительного и отрицательного заряда не совпадают (она не симметрична), молекула является диполем.

Аналогичные рассуждения позволяют объяснить валентные углы в молекуле аммиака NH 3 . Гибридизацию с участием неподеленных электронных пар, обычно предполагают только для орбиталей атомов элементов II периода. Валентные углы в молекулах H 2 S = 92°, H 2 Se = 91°, H 2 Te = 89°. То же самое наблюдается в ряду NH 3 , РH 3 , AsH 3 . При описании геометрии этих молекул, традиционно, или не прибегают к представлениям о гибридизации, или объясняют уменьшение тетраэдрического угла возрастающим влиянием неподеленной пары.

Общая и БИОорганическая химия

(конспект лекций)

Часть 2. Органическая химия

Для студентов 1 курса медицинского факультета специальности «Стоматология»

Издательство Российского университета дружбы народов,


У т в е р ж д е н о

РИС Ученого совета

Российского университета дружбы народов

Ковальчукова О.В., Авраменко О.В.

Общая и биоорганическая химия (конспект лекций). Часть 2. Органическая химия. Для студентов 1 курса медицинского факультета специальности «Стоматология». М.: Изд-во РУДН, 2010. 108 с.

Конспект лекций, читаемых для студентов 1 курса медицинского факультета специальности «Стоматология». Составлено в соответствии с программой курса "Общая и биоорганическая химия".

Подготовлено на кафедре общей химии.

© Ковальчукова О.В., Авраменко О.В.

© Издательство Российского университета дружбы народов, 2010


ВВЕДЕНИЕ

Биоорганическая химия – раздел химии, который тесно связан с такими специальными дисциплинами медицинских факультетов вузов, как биохимия, фармакология, физиология, молекулярная биология. Она является областью науки, изучающей строение и механизмы функционирования биологически активных молекул с позиций и представлений органической химии, определяющей закономерности во взаимосвязи строения и реакционной способности органических соединений.

Основное внимание в настоящем курсе лекций уделено классифицированию органических соединений по строению углеродного скелета и природе функциональных групп, закономерностям, связывающим химические строение органических молекул с характером их реакционных центров, связи их электронного и пространственного строения с механизмами химических превращений.

ТЕОРИЯ ХИМИЧЕСКОГО СТРОЕНИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Органические соединения – это соединения углерода (кроме наиболее простых), в которых он проявляет валентность IV.

Органическая химия – это химия углеводородов и их производных.

Атом углерода в органических соединениях находится в возбужденном состоянии и имеет четыре неспаренных электрона:

6 С 1s 2 2s 2 2p 2 → 6 С* 1s 2 2s 1 2p 3

Атом углерода в возбужденном состоянии способен:

1) образовывать прочные связи с другими атомами углерода, что приводит к формированию цепей и циклов;

2) вследствие различного типа гибридизации орбиталей формировать простые, двойные и тройные связи между атомами углерода и с другими атомами (H, O, N, S, P и др.);

3) соединяться с четырьмя различными атомами, что приводит к образованию разветвленных углеродных цепочек.

Типы гибридизации атома углерода в органических соединениях

sp 3 – гибридизация

Все четыре валентные орбитали участвуют в гибридизации. Валентный угол 109 о 28’ (тетраэдр). Атомы углерода образуют только простые (σ) связи – соединение насыщенное.

sp 2 – гибридизация

Образуются три гибридные и одна негибридная орбиталь. Валентный угол 120 о (плоские структуры, правильный треугольник). Гибридные орбитали образуют σ–связи. Негибридные орбитали образуют p-связи. sp 2 –Гибридизация характерна для непредельных соединений с одной p - связью.

sp – гибридизация

Образуются две гибридные и две негибридные орбитали. Валентный угол 180 о (линейные структуры). Атом углерода в состоянии sp -гибридизации принимает участие в образовании двух двойных связей или одной тройной связи.

Теория строения органических соединений сформулирована в 1861 г А.М. Бутлеровым и включает следующие положения:

1. Все атомы, входящие в состав молекулы, связаны между собой в строго определенной последовательности в соответствии с их валентностями. Порядок соединения атомов в молекулу обусловливает ее химическое строение .

2. Свойства органических соединений зависят не только от качественного и количественного состава веществ, но и от порядка их соединения (химического строения молекулы).

3. Атомы в молекуле оказывают взаимное влияние друг на друга, т.е. свойства групп атомов в молекуле могут изменяться в зависимости от природы других атомов, входящих в состав молекулы. Группа атомов, определяющая химические свойства органических молекул, носит название функциональная группа .

4. Каждое органическое соединение имеет лишь одну химическую формулу. Зная химическую формулу, можно предсказать свойства соединения, а изучая на практике его свойства, установить химическую формулу.

Органическая молекула

Типы углеродного скелета :

Ациклический:

· разветвленный;

· нормальный (линейный).

Циклический:

· карбоциклический (цикл только из атомов углерода);

· гетероциклический (кроме атомов углерода в цикл входят некоторые другие атомы – азота, кислорода, серы).

Типы атомов углерода в углеводородной цепи:

Н 3 С-СН 2 -СН-С- СН 3

Первичные атомы углерода (соединены в цепи только с одним атомом углерода, является концевым);

Вторичный атом углерода (соединен с двумя соседними атомами углерода, находится в середине цепи);

Третичный атом углерода (находится на разветвлении углеродной цепи, соединен с тремя атомами углерода);

Четвертичный атом углерода (не имеет других заместителей, кроме атомов углерода).

Функциональная группа – особая группа атомов, которая определяет химические свойства соединений.

Примеры функциональных групп:

-ОН –гидроксильная группа (спирты, фенолы);

С=О – карбонильная группа (кетоны, альдегиды);

С - карбоксильнаягруппа (карбоновые кислоты);

-NH 2 – аминогруппа (амины);

-SH – тиольная группа (тиоспирты)

органическое соединение

состав свойства химическое строение

Атомы, входящие в состав органического соединения, могут по-разному соединяться в молекулы. Например, соединению состава С 2 Н 6 О может отвечать два химических соединения, имеющих разные физические и химические свойства:

Состав органического соединения – число атомов различных элементов входящих в его молекулу. Изомеры – соединения, имеющие одинаковый состав, но разное химическое строение. Изомеры обладают различными химическими свойствами.

Типы изомерии

СТРУКТУРНАЯ ИЗОМЕРИЯ

Изомерия углеродной цепи:

Изомерия положения кратных связей:

Межклассовая изомерия:

СТЕРЕОИЗОМЕРИЯ

Геометрическая (пространственная, цис-транс -изомерия соединений с двойными связями):

цис -бутен-2 транс -бутен-2

Геометрическая изомерия возможна в том случае, если каждый из атомов углерода, участвующий в образовании двойной связи, имеет разные заместители. Так, для бутена-1 СН 2 =СН–СН 2 –СН 3 геометрическая изомерия невозможна, так как один из атомов углерода при двойной связи имеет два одинаковых заместителя (атомы водорода).

Геометрическая (пространственная, цис-транс -изомерия циклических предельных соединений):

Геометрическая изомерия возможна в том случае, если хотя бы два атома углерода, образующих цикл, имеют разные заместители.

Оптическая :

Оптическая изомерия – вид стереоизомерии, обусловленный хиральностью молекул. В природе имеются соединения, которые соотносятся как две руки одного человека. Одним из свойств этих соединений является их несовместимость со своим зеркальным отражением. Это свойство называется хиральностью (от греч. « сheir» – рука).

Оптическая активность молекул обнаруживается при действии на них поляризованного света. Если через раствор оптически активного вещества пропустить поляризованный луч света, то произойдет вращение плоскости его поляризации. Оптические изомеры обозначают, используя префиксы d-

Продолжение. Начало см. в № 15, 16/2004

Урок 5. Гибридизация
атомных орбиталей углерода

Ковалентная химическая связь образуется при помощи общих связывающих электронных пар по типу:

Образовывать химическую связь, т.е. создавать общую электронную пару с «чужим» электроном от другого атома, могут только неспаренные электроны. Неспаренные электроны при записи электронных формул находятся по одному в клетке-орбитали.
Атомная орбиталь – это функция, которая описывает плотность электронного облака в каждой точке пространства вокруг ядра атома. Электронное облако – это область пространства, в которой с высокой вероятностью может быть обнаружен электрон.
Для согласования электронного строения атома углерода и валентности этого элемента пользуются представлениями о возбуждении атома углерода. В нормальном (невозбужденном) состоянии атом углерода имеет два неспаренных 2р 2 -электрона. В возбужденном состоянии (при поглощении энергии) один из 2s 2 -электронов может переходить на свободную р -орбиталь. Тогда в атоме углерода появляется четыре неспаренных электрона:

Напомним, что в электронной формуле атома (например, для углерода 6 С – 1s 2 2s 2 2p 2) большие цифры перед буквами – 1, 2 – обозначают номер энергетического уровня. Буквы s и р указывают форму электронного облака (орбитали), а цифры справа над буквами говорят о числе электронов на данной орбитали. Все s -орбитали сферические:

На втором энергетическом уровне кроме 2s -орбитали имеются три 2р -орбитали. Эти 2р -орбитали имеют эллипсоидную форму, похожую на гантели, и ориентированы в пространстве под углом 90° друг к другу. 2р -Орбитали обозначают 2р х , 2р y и 2р z в соответствии с осями, вдоль которых эти орбитали расположены.

При образовании химических связей электронные орбитали приобретают одинаковую форму. Так, в предельных углеводородах смешиваются одна s -орбиталь и три р -орбитали атома углерода с образованием четырех одинаковых (гибридных) 3 -орбиталей:

Это – 3 -гибридизация.
Гибридизация – выравнивание (смешивание) атомных орбиталей (s и р ) с образованием новых атомных орбиталей, называемых гибридными орбиталями .

Гибридные орбитали имеют асимметричную форму, вытянутую в сторону присоединяемого атома. Электронные облака взаимно отталкиваются и располагаются в пространстве максимально далеко друг от друга. При этом оси четырех 3-гибридных орбиталей оказываются направленными к вершинам тетраэдра (правильной треугольной пирамиды).
Соответственно углы между этими орбиталями – тетраэдрические, равные 109°28".
Вершины электронных орбиталей могут перекрываться с орбиталями других атомов. Если электронные облака перекрываются по линии, соединяющий центры атомов, то такую ковалентную связь называют сигма()-связью . Например, в молекуле этана С 2 Н 6 химическая связь образуется между двумя атомами углерода перекрыванием двух гибридных орбиталей. Это -связь. Кроме того, каждый из атомов углерода своими тремя 3 -орбиталями перекрывается с s -орбиталями трех атомов водорода, образуя три -связи.

Всего для атома углерода возможны три валентных состояния с различным типом гибридизации. Кроме 3 -гибридизации существует 2 - и -гибридизация.
2 -Гибридизация – смешивание одной s - и двух р -орбиталей. В результате образуются три гибридные 2 -орбитали. Эти 2 -орбитали расположены в одной плоскости (с осями х , у ) и направлены к вершинам треугольника с углом между орбиталями 120°. Негибридизованная
р -орбиталь перпендикулярна к плоскости трех гибридных 2 -орбиталей (ориентирована вдоль оси z ). Верхняя половина р -орбитали находится над плоскостью, нижняя половина – под плоскостью.
Тип 2 -гибридизации углерода бывает у соединений с двойной связью: С=С, С=О, С=N. Причем только одна из связей между двумя атомами (например, С=С) может быть -связью. (Другие связывающие орбитали атома направлены в противоположные стороны.) Вторая связь образуется в результате перекрывания негибридных р -орбиталей по обе стороны от линии, соединяющей ядра атомов.

Ковалентная связь, образующаяся путем бокового перекрывания р -орбиталей соседних углеродных атомов, называется пи()-связью .

Образование
-связи

Из-за меньшего перекрывании орбиталей -связь менее прочная, чем -связь.
-Гибридизация – это смешивание (выравнивание по форме и энергии) одной s- и одной
р -орбиталей с образованием двух гибридных -орбиталей. -Орбитали расположены на одной линии (под углом 180°) и направлены в противоположные стороны от ядра атома углерода. Две
р -орбитали остаются негибридизованными. Они размещены взаимно перпендикулярно
направлениям -связей. На рисунке -орбитали показаны вдоль оси y , а негибридизованные две
р -орбитали– вдоль осей х и z .

Тройная углерод-углеродная связь СС состоит из -связи, возникающей при перекрывании
sp -гибридных орбиталей, и двух -связей.
Взаимосвязь таких параметров атома углерода, как число присоединенных групп, тип гибридизации и типы образуемых химических связей, показана в таблице 4.

Таблица 4

Ковалентные связи углерода

Число групп,
связанных
с углеродом
Тип
гибридизации
Типы
участвующих
химических связей
Примеры формул соединений
4 sp 3 Четыре - связи
3 sp 2 Три - связи и
одна - связь
2 sp Две - связи
и две -связи

H–CC–H

Упражнения .

1. Какие электроны атомов (например, углерода или азота) называют неспаренными?

2. Что означает понятие «общие электронные пары» в соединениях с ковалентной связью (например, СН 4 или Н 2 S)?

3. Какие электронные состояния атомов (например, С или N) называют основными, а какие возбужденными?

4. Что означают цифры и буквы в электронной формуле атома (например, С или N)?

5. Что такое атомная орбиталь? Сколько орбиталей на втором энергетическом уровне атома С и чем они различаются?

6. В чем отличие гибридных орбиталей от исходных орбиталей, из которых они образовались?

7. Какие типы гибридизации известны для атома углерода и в чем они заключаются?

8. Нарисуйте картинку пространственного расположения орбиталей для одного из электронных состояний атома углерода.

9. Какие химические связи называют и какие ? Укажите - и -связи в соединениях:

10. Для атомов углерода приведенных ниже соединений укажите: а) тип гибридизации; б) типы его химических связей; в) валентные углы.

Ответы на упражнения к теме 1

Урок 5

1. Электроны, которые находятся по одному на орбитали, называют неспаренными электронами . Например, в электронографической формуле возбужденного атома углерода – четыре неспаренных электрона, а у атома азота – три:

2. Два электрона, участвующие в образовании одной химической связи, называют общей электронной парой . Обычно до образования химической связи один из электронов этой пары принадлежал одному атому, а другой электрон – другому атому:

3. Электронное состояние атома, в котором соблюдается порядок заполнения электронных орбиталей: 1s 2 , 2s 2 , 2p 2 , 3s 2 , 3p 2 , 4s 2 , 3d 2 , 4p 2 и т.д., называют основным состоянием . В возбужденном состоянии один из валентных электронов атома занимает свободную орбиталь с более высокой энергией, такой переход сопровождается разъединением спаренных электронов. Схематически это записывают так:

Тогда как в основном состоянии было только два валентных неспаренных электрона, то в возбужденном состоянии таких электронов становится четыре.

5. Атомная орбиталь – это функция, которая описывает плотность электронного облака в каждой точке пространства вокруг ядра данного атома. На втором энергетическом уровне атома углерода четыре орбитали – 2s , 2р x , 2р y , 2р z . Эти орбитали различаются:
а) формой электронного облака (s – шар, р – гантель);
б) р -орбитали имеют разную ориентацию в пространстве – вдоль взаимно перпендикулярных осей x , y и z , их обозначают р x , р y , р z .

6. Гибридные орбитали отличаются от исходных (негибридных) орбиталей формой и энергией. Например, s -орбиталь – форма сферы, р – симметричная восьмерка, sp -гибридная орбиталь – асимметричная восьмерка.
Различия по энергии: E (s ) < E () < E (р ). Таким образом, sp -орбиталь – усредненная по форме и энергии орбиталь, полученная смешиванием исходных s - и p -орбиталей.

7. Для атома углерода известны три типа гибридизации: sp 3 , sp 2 и sp (см. текст урока 5 ).

9. -связь – ковалентная связь, образующаяся путем лобового перекрывания орбиталей по линии, соединяющей центры атомов.
-связь – ковалентная связь, образующаяся путем бокового перекрывания р -орбиталей по обе стороны от линии, соединяющей центры атомов.
-Связи показывают второй и третьей черточкой между соединенными атомами.

Основные понятия органической химии. Углерод выделяется среди всех элементов тем, что его атомы могут связываться друг с другом в длинные цепи или циклы. Именно это свойство позволяет углероду образовывать миллионы соединений, изучению которых посвящена целая область - органическая химия.

Современная теория строения молекул объясняет и огромное число органических соединений, и зависимость свойств этих соединений от их химического строения. Она же полностью подтверждает основные принципы теории химического строения, разработанные выдающимся русским ученым А. М. Бутлеровым. (НЕ ФАКТ ЧТО ТО ЧТО НУЖНО).

Гибридизация (химия) - специфическое взаимодействие атомных орбиталей в молекулах.

Атомы (наименьшая возможная частица любого из простейших химических веществ, называемых элементами) состоят из ядер и электронов, которые вокруг них крутятся. Электроны - это не совсем корпускулы, но и волны тоже, поэтому они образуют своеобразные облака вокруг ядер атомов (некие пространства, в которых "обитают" электроны). Если облако одного электрона парекрывается с облаком другого, то может произойти гибридизация - электронные облака объединяются и два электрона начинают "обитать" в одном общем облаке. Поскольку эти электроны принадлежат разным атомам, атомы становятся связаными.

Гибридизация орбиталей - концепция смешения разных, но близких по энергии орбиталей данногоатома, с возникновением того же числа новых гибридных орбиталей, одинаковых по энергии и форме. Гибридизация атомных орбиталей происходит при возникновении ковалентной связи между атомами. Гибридизация орбиталей очень полезна при объяснении формы молекулярных орбиталей и является интегральной частью теории валентных связей.

Химические превращения высокомолекулярных соединений. Реакции деструкции полимеров. Виды деструкции.

Различают три вида реакций полимеров:
– реакции без изменения степени полимеризации (полимераналогичные превращения);
– реакции, приводящие к ее увеличению (структурирование, блок- и привитая сополимеризация);
– реакции, приводящие к уменьшению степени полимеризации (разрыв цепи при деструкции полимера).

Виды:

Химическая деструкция;

Окислительн6ая деструкция;

Окислительная деструкция наблюдается как у гетероцепных, так и у карбоцепных полимеров;

Деструкция под влиянием физических воздействий

Термическая деструкция

Фотохимическая деструкция

Деструкция под влиянием радиоактивного излучения. Под влиянием ионизирующих излучений полимеры претерпевают глубокие химические и структурные изменения, приводящие к изменению физико-химических и физико-механических свойств


Механохимическая деструкция

Билет № 5

1.Типы гибридизации атомных орбиталей в органических соединениях. sp 3 −, sp 2 −, sp− гибридизация.

Атомная орбиталь – это функция, которая описывает плотность электронного облака в каждой точке пространства вокруг ядра атома.

Виды гибридизации

Sp-гибридизация

Происходит при смешивании одной s- и одной p-орбиталей. Образуется две равноценные sp-атомные орбитали, расположенные линейно под углом 180 градусов и направленные в разные стороны от ядра атома углерода. Две оставшиеся негибридные p-орбитали располагаются во взаимно перпендикулярных плоскостях и участвуют в образовании π-связей, либо занимаются неподелёнными парами электронов.

sp 2 -гибридизация

Происходит при смешивании одной s- и двух p-орбиталей. Образуется три гибридные орбитали с осями, расположенными в однойплоскости и направленными к вершинам треугольника под углом 120 градусов. Негибридная p-атомная орбиталь перпендикулярна плоскости и, как правило, участвует в образовании π-связей

sp 3 -гибридизация

Происходит при смешивании одной s- и трех p-орбиталей, образуя четыре равноценные по форме и энергии sp3-гибридные орбитали. Могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов.

Оси sp3-гибридных орбиталей направлены к вершинам правильного тетраэдра. Тетраэдрический угол между ними равен 109°28", что соответствует наименьшей энергии отталкивания электронов. Так же sp3-орбитали могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов.