Портал о ремонте ванной комнаты. Полезные советы

Вихревой теплогенератор схема своими руками. Инструменты и приборы

Уже невозможно пересчитать все статьи и все публикации по поводу этих генераторов. И чего только про них не написано, и что это решение всех энергетических проблем, и что это полное шарлатанство. Вся эта тема обросла кучей домыслов и всяких легенд. Выдвигалось множество теорий и предположений, откуда берется дополнительная энергия – от холодного ядерного синтеза до использования энергии эфира. Из Америки то же поступают сведения, что якобы какой-то инженер создал тепловую установку с КПД 135% называется эта установка – поющая (свистящая) при работе издает громкий свистящий звук. Но как практика показывает чудес в природе не бывает и всякое чудо можно объяснить, если досконально разобраться в сущности вопроса. Когда фокусник достает голубя из своей пустой шляпы это производит впечатление. Так откуда же берется дополнительная энергия в генераторах Потапова и прочих аналогичных устройствах. Вот в этом вопросе и попытаемся разобраться в данной статье.

Все по порядку. Несколько лет назад, с моей подачи, одна авто мастерская приобрела генератор Потапова. Авто сервис располагался в двух больших ангарах, стоящих рядом, и представляющих собой металлические полубочки площадью около 300 квадратных метров каждая. Эти строения остатки слесарных мастерских от бывшего гаража совхоза. К ним подведено 3-х фазное электричество, и не подведено отопления и воды. В данной ситуации генератор Потапова казался панацеей для решения всех проблем. Я помог выбрать и приобрести генератор Потапова коллективу этого малого предприятия. Согласно техническим характеристикам генератора он должен выдавать не менее 140% КПД. Мне самому было крайне интересно а правда ли что будет такое – энергия из ни откуда. Прошла зима и был результат — ни какого КПД свыше 100% не было. После не сложных расчетов и вычислений было понятно что КПД установки находится в пределах 70-80% а руководитель автосервиса не стесняясь высказывал свое недовольство в мой адрес и особенно сильно в адрес Потапова. Жизнь идет и к следующей зиме надо было что- то делать. На этот раз я был хитрее и рекомендовал опробованный метод – нагрев воды с помощью электричества посредством обычных тенов с КПД =100% . А генератор Потапова использовать, как насос для прокачки горячей воды в отопительной системе. Сказано – сделано. На вход генератора Потапова, последовательно с ним, в контур циркулирования воды был поставлен обычный нагревательный бак с тенами (выпускаемый серийно). Вот тут и начались чудеса. Руководитель автосервиса был в восторге – в самый сильный мороз в ангаре можно было работать раздетым. А я был крайне озадачен, что же я такое рекомендовал что получил такой результат. Опять не стыковка КПД получалось свыше 100%. То слишком мало то слишком много – чушь полная. Стал разбираться – просил запускать комплекс в разных режимах работы, с разными температурами и прочее. (Кстати сказать и генераторы Потапова у отдельных пользователей в начале выдавали свыше 100% КПД делали замер а потом почему то они переставали давать параметры работы как в начале.) После анализа всех данных получалась следующая картина. КПД всего комплекса могла быть свыше 100% при условии что вода из нагревательного бака поступает в генератор Потапова с температурой около 65С При этом вода абсолютно прозрачная (просто горячая). А выходя из генератора Потапова вода приобретает мутновато белый цвет – как будто к воде добавили молоко хотя температура тоже остается около 65С. Такую мутноватую воду можно наблюдать в системе отопления, когда спускают воздушные пробки. Вот с этой мутноватой водой и происходит все не понятное. Мутная вода поступая в батарею и радиатор начинает отдавать тепло окружающей среде, при этом сам радиатор и вода четко имеют температуру 65С и не остывает (хотя визуально видно что радиатор отдает тепловую энергию окружающему пространству). Далее вода поступает в следующий радиатор – радиатор стоит горячий (около 65С), а вода не охлаждается и только поступив в третий радиатор вода сперва приобретает свою прозрачность и после этого начинает линейно остывать во всех следующих радиаторах отопления. Система отопления авто сервиса представляет собой 10 батарей с 18 секциями каждая, включенных последовательно. Вот результаты замеров:

Батарея №1 температура 65С вода мутная как будто с молоком.

Батарея №2 температура 68С вода мутная как будто с молоком.

Батарея №3 температура 65С вода почти прозрачная, но еще мутная.

Батарея №4 температура 60С вода прозрачная.

Батарея №5 температура 55С вода прозрачная.

Батарея №6 температура 50С вода прозрачная

Батарея №7 температура 45С вода прозрачная

Батарея №8 температура 40С вода прозрачная

Батарея №9 температура 35С вода прозрачная

Батарея №10 температура 30С вода прозрачная

После 10-ой батареи, в магистрали отопления стоит кран, для отбора горячей воды на бытовые нужд – помывка автомобилей, душ для работников и прочее. Далее магистраль отопления соединяется с нагревательным баком, к которому подведена еще одна магистраль холодной воды, для питания всей системы водой из артезианской скважины. Из нагревательного бака вода поступает уже нагретой в сам генератор Потапова. Если воду не нагреть до 65С в баке с тенами, а подать в генератор Потапова например с температурой 50С,то на входе будет 50С, а в каждой последующей батарее будет уменьшение на 5 градусов линейно и вода при этом будет прозрачной, и не будет ни какого дополнительного тепла. Выделение «неизвестной» энергии происходит только в воде нагретой до 65С и при этом она должна быть взбученной, взболтанной – иметь мутновато-белый цвет. Генератор Потапова в принципе можно заменить на абсолютно любой взбалтыватель. Ноу-хау ни какого нет. Выделение неизвестной энергии идет не в генераторе Потапова а в системе радиаторов.

Что температура воды в батарее №2 стоит 68С а в батареи №1 65С это не опечатка, действительно наблюдается не большое повышение (на2-3С) температуры воды в батареи хотя по логике вещей вода в батареи должна охлаждаться, а тут происходит даже нагрев без дополнительного подвода энергии. Весь секрет в воде. Вода крайне интересная штука.

Все по порядку. Н2 О всем известная формула, молекула представляет собой

рогатулину с углом в104,27 градусов,точнее при таком написании формулы воды Н2 О это имеется в виду водяной пар. В жидком состоянии вода представляет собой более сложную формулу (Н2 О)8 и (Н2 О)6

за счет того что все водородные связи оказываются замкнуты то вода приобретает свою текучесть. С одной стороны вода это вроде бы жидкость с другой стороны это твердые кристаллы, мельчайших размеров (молекулярного уровня). Полная аналогия с песком – песок, если рассматривать одну песчинку это абсолютно твердое вещество, а если песок рассматривать в большом объеме то это вроде бы текучая (жидкая) субстанция. Зыбучие пески – в них даже можно утонуть как в воде. Молекула воды не плоская, а как бы состоит из 2-х слоев. Это получается из-за того что угол равен 104,27 между атомами водорода, а в угле жидкой молекулы восьми угольника угол равен 135 точно также как в шести угольнике угол равен 120. Это не соответствие 135-104,27 =27,73 градуса в восьмиугольной и 120-104,27=15,73 градуса в шестиугольнике компенсируется выпячиванием одного слоя (четного) над другим слоем (нечетного) и угол все равно остается равным 104,27. Молекула воды (Н2 О)8 представляет собой как бы два квадрата сдвинутые относительно друг друга на 45 градусов, а в углах этих квадратов располагаются молекулы Н2 О. Молекула воды (Н2 О)6 представляет собой как бы два треугольника сдвинутые друг относительно друга на 60 градусов и в углах этих треугольников располагаются молекулы Н2 О. Н2 О- это пар, а жидкая вода это смесь кристаллов молекул (Н2 О)8 и (Н2 О)6 . Есть у воды и еще одно кристаллическое состояние – лед.

Лед имеет форму кубиков, а точнее трапеций, а еще точнее трапеций вперемешку с

треугольниками.

Но и это утверждение не совсем верное, потому что в каждом кубике остаются 2 пары не учтенных водородных связей и эти водородные связи соединяются с другими кубиками, поэтому лед представляет собой, как бы один большой монолитный кристалл. Именно этим объясняется механическая твердость льда. Получается, что каждая в отдельности взятая молекула Н2 О, в кристалле льда, связана со всеми остальными молекулами Н2 О Во всех химических справочниках такая кристаллическая решетка льда называется гексагональной. Химическую формулу льда следовало бы записать так (Н2 О)бесконечность. Под бесконечностью подразумевается очень большое, но конечное число молекул Н2 О входящих в состав конкретного объекта – например айсберга. В грубом приближении можно утверждать, что количество молекул в айсберге равно бесконечности и айсберг это один большой кристалл

Есть у воды еще два кристаллических состояния, но они образуются при очень сверх низких температурах. Настолько низкие температуры можно получить только в лабораторных условиях по этому эти кристаллические решетки остаются уделом изучения специалистов. Сейчас будем говорить только об агрегатных состояниях воды в допустимом диапазоне температур:

Твердое состояние Лед — (Н2 О)бесконечность Устойчивое состояние до 0С

Жидкое состояние Вода -(Н2 О)8 и (Н2 О)6 (смесь) Устойчивое состояние от 0С до 100С

Газообразное состояние Пар – (Н2 О)2 и Н2 О (смесь)Устойчивое состояние от 100С до135С

Газообразное состояние Перегретый пар – Н2 О Устойчивое состояние от 135С и выше

Отдельно надо поговорить еще об одном классе кристаллов воды – снежинках.

Такие твердые водяные кристаллы образуются сразу из газообразной фазы при отрицательной температуре. Причем при разных отрицательных температурах образуются разные снежинки. Центром образования снежинки служит молекула (Н2 О)6 – шести угольник по этому снежинки всегда шестиугольные

Примечание: В советские времена на советских плакатах можно было увидеть снежинки с 5 лучами. Они существуют???? НЕТ Снежинки с пятью лучами художники рисовали не с натуры, а руководствуясь идеологическими рвениями и наказом партии.

Профессор – физик из Калифорнийского университета Кеннет Либбехт задался целью узнать вероятность повторения узора снежинки. Для этого он стал фотографировать снежинки, на специально сконструированном стенде, установленном на джипе. Фотографировал на протяжении 5 лет сделал более 6500 фотографий и что самое поразительное на всех фотографиях снежинки были разные со своим индивидуальным рисунком. Вопрос-« а если в природе две одинаковые снежинки» остается открытым, есть предположение, не без оснований, что двух одинаковых снежинок в природе не существует. Просматривая его каталог снежинок я наткнулся на фотографии крайне интересных кристаллов – очень редких с 12 лучами, такие снежинки приходятся приблизительно одна на 500 штук. Выдвигаю предположение, что в природе существует еще одна разновидность жидких кристаллов воды (Н2 О)12 о таком состоянии воды ни в одной литературе не упоминается. Но если есть фотография, то это просто обязано быть.

Теперь поговорим о кристаллической решетке.

Практически все вещества обладают кристаллической решеткой – это известно всем из курса школьной программы. Чтобы разрушить кристаллическую решетку надо затратить энергию – этот процесс называется плавление. Процесс обратимый – при разрушении кристаллической решетки (плавление) идет поглощение тепловой энергии при создании решетки (затвердевании) идет выделение энергии. Вот именно по этому у многих веществ с ярко выраженной кристаллической решеткой температура плавления указывается от и до, нет конкретного числа. Например сера. В этой статье речь идет о воде по этому будем говорить о воде. В физике удельная теплота плавления обозначается L и меряется Джоуль на килограмм. Для воды (льда) составляет 33,7*100000 джоулей на килограмм (литр). О-го-го сколько. А как же быть с жидкой водой. Ведь она тоже состоит из кристаллов двух типов (Н2 О)8 и (Н2 О)6 . Если есть кристаллы значит есть скрытая тепловая энергия. А не эта ли тепловая энергия и выделяется в генераторах Потапова и подобных. Предполагаю, что при температуре в 65С образуются условия перестроения одной кристаллической решетки воды в другой тип решётки, и сопровождается этот процесс выделением тепловой энергии.

Реакция перестроения записывается следующим видом.

жидкость T=65С жидкость пар энергия

(Н2 О)8 = (Н2 О)6 + 2 Н2 О +Т

из этой записи становится хорошо видно, почему вода приобретает мутноватый вид – в воде образуются пар — мелко дисперсный на уровне молекул. Этот пар конденсируется в нутре воды, и этот процесс (конденсации) идет с выделением тепловой энергии. После конденсации образуется (Н2 О)6 . Сперва отдельные молекулы Н2 О образуют пары а затем образуются сложные молекулы, то есть сперва перегретый пар превращается просто в пар а затем в жидкость.

2 Н2 О = (Н2 О)2 + Т

3 (Н2 О)2 = (Н2 О)6 + Т

Инициатором этого процесса (разрушение кристаллической решетки) и является взбалтывание, взбучивание воды в генераторе Потапова. Точно также, как нитроглицерин надо ударить для инициации бурной химической реакции — взрыва. Для перестроения одного типа кристаллической решетки воды в другой тип требуется два условия – температура 65С и взбалтывание (взбучивание) воды. При выполнении этих условий идет перестроение кристаллической решетки с выделением тепловой энергии, которая воспринимается потребителем как КПД свыше 100%.

Становится понятно почему генераторы Потапова, когда заправлены свежей водой, могут давать КПД свыше 100%. Так же понятно почему в автосервисе наблюдается завышенное выделение тепловой энергии – в мастерской постоянно идет слив воды, из отопительной системы, для мытья машин и постоянно идет подпитка системы свежей водой из артезианской скважины.

Получается, что система отопления не замкнутая, а разомкнутая с точки зрения энергии.

Так откуда же берется «дармовая» энергия. А энергия берется от нашего солнышка. Сперва солнышко плавит снежинки и лед образуется талая вода (Н2 О)6

Жидкость Т=от0 до40 испарения

3 (Н2 О)6 = 2 (Н2 О)8 + 2 (Н2 О)2 – Т

Идет поглощение тепловой энергии из окружающей среды. Когда человек выходит мокрый из речки и если на него еще дует ветерок – довольно холодно, это и есть поглощение энергии воды из окружающей среды путем испарения.

Часть молекул Н2 О улетает в качестве пара, а часть молекул Н2 О остается в талой воде в которой образуется (Н2 О)8 по мере испарения, в воде, все больше образуется скрытой энергии.

получается уже не талая вода а смесь двух видов (Н2 О)8 и(Н2 О)6 в кристаллической решетки одной из них спрятана тепловая энергия.

Далее такая вода (смесь) (Н2 О)8 и(Н2 О)6 поступает в систему отопления авто мастерской, где вода (Н2 О)8 преобразуется в (Н2 О)6 с выделением тепловой энергии из-за разрушения (перестроения) кристаллической решетки. Вода с течением времени, в системе отопления, становится (Н2 О)6. Далее вода расходуется на помывку автомобилей и идет в сток. В стоке она испаряется.

3(Н2 О)6 = 2(Н2 О)8 + 2 Н2 О – Т (тепловая энергия окружающей среды)

Процесс замыкается. В этом процессе участвует тепловая энергия окружающей среды.

И нет ни чего удивительного, что в автомастерскую поступает скрытая тепловая энергия в виде запасенной энергии в кристаллической решетки.

Как бы красиво не выглядела теория вершина всего — эксперимент.

Долго думал, как подтвердить или опровергнуть свои догадки с помощью эксперимента.

И решил, раз один вид воды должен поглощать энергию окружающей среды, значит данная вода должна испаряться медленней. В автомастерской попросил дать образцы воды, но так что бы вода как можно больше раз про циркулировала по контуру отопления. Работники авто сервиса сказали, что ночью не идет слива воды и утро это самое подходящее время для взятия образцов. Сказано – сделано.

Вот вода совершенно ни чем не отличается от другой ни на вкус, ни на цвет.

Ее налил в стакан. Рядом налил стакан с водопроводной водой и рядом поставил стакан с талой водой полученной из снега. Все три стакана наполнены одинаково, стоят рядом. Для чистоты эксперимента наполнил точно также еще 3 стакана и поставил в другую комнату, что бы эксперимент шел в разных комнатах.

Через неделю видно что в стакане №1 и№3 испарение воды идет медленней, чем в стаканах№2 через две недели скорость испарения воды выравнивается. Почему скорость испарения воды с течением времени выравнивается внимательный читатель уже наверное догадался.

И последнее что бы сделать качественную оценку, а сколько же скрытой энергии находится в воде, пришлось покопаться в учебниках. Точно сказать не возможно по причине того, что в этой области нет совершенно ни каких данных, но приблизительно можно сделать оценку. Что бы нагреть литр воды на 1 градус надо затратить 80кило калорий. Отталкиваясь от этого и аппроксимируя все данные можно утверждать, что «дармовой» энергии получается где-то около 36 тысяч килокалорий.

Приблизительно 1-2 литра бензина — за один цикл циркулирования 300 литров воды.

Или по другому в 100 литрах воды содержится скрытой энергии как в 0,5 литре бензина, при сжигании. Пол литра бензина вроде бы не много на такое количество воды, но здесь надо обратить внимание на то, что это возобновляемый источник энергии. Бензин сожгли и все, его больше нет. А вот в воде получив энергию за счет перекристаллизации можно слить отработанную воду, подождать, когда наше солнышко испарит эту воду, произойдет восстановление воды. И эта же вода опять годится для перекристаллизации с выделением дополнительной тепловой энергии.

Блеск и нищета генераторов Потапова.

Принимая во внимание что на принципе перекристаллизации воды можно изготавливать тепловые системы отопления помещений, на базе существующих тепловых сетей, без особых капитальных вложений становится очень заманчиво и привлекательно использование этого принципа. Как использовать этот принцип. А для использования этого принципа надо создать, в тепловых сетях, два условия. Первое – температура 65 С и второе — некое устройство которое взбучивает воду. Много раз я наблюдал как из под горячего крана начинает идти вода с примесью пара, мутновато-белого цвета. Вода перестает быть белой когда кран немного открыт и когда кран полностью открыт. Данный эффект имеет место только при полу закрытом кране. Предлагаю, в том месте, где находится ввод горячей воды для отапливания помещений, в нутрии трубы ставить шайбу, поперек напора воды, что бы создать перепад давления и вызвать эффект замутнения воды а точнее образование в ней пара. Собственно говоря эта шайба и будет выполнять роль генератора Потапова. Тепловые отопительные системы имеют очень низкий КПД из-за того что есть большие потери тепла при прокачки горячей воды к потребителю. Такой взбалтователь (шайбу) надо ставить не на тепло станции а непосредственно у потребителя (у ввода системы отопления) прямо в квартире. Тем самым минимизировать потери тепла в тепловых сетях, и повышать КПД в целом. Когда вода пройдет 2-3 круга циркулирования ее надо заменять, то есть надо сливать и добавлять в систему свежий тепло носитель. Для этого на тепло станциях надо поставить теплообменник. В теплообменники вода идущая от потребителей (использованная) будет отдавать остаток тепла свежий воде, которая будет постоянно подкачиваться в систему. Или использовать, теплую воду, из обратки на какие ни будь технологические нужды. Таким образом, можно без особых капитальных вложений модернизировать существующие тепло сети и повысить их эффективность приблизительно на 10-20%.

А если оправдаются обещания и заверения господина Потапова (в чем я очень сильно сомневаюсь) то эффективность увеличится на все 40%.

Дополнение.

Существует техническое изделие – ультразвуковая стиральная машинка. Представляет собой ультразвуковой излучатель с маломощным блоком питания. Суть стиральной машинки – излучатель опускается в воду с замоченным бельем, и белье якобы отстирывается без применения моющих средств. Попробовал – ни чего не получается, но когда стал применять воду с температурой около 65 градусов, все стало получатся. Вода стала мутнеть, вокруг ультразвукового излучателя и белье, действительно, стало отстирываться без применения моющих средств. Предполагаю, что ультра звук здесь не причем, просто он (ультра звук) вызывает реакцию перекристаллизации воды с образованием пара, который в свою очередь и разрушает загрязнение белья. Как тут не вспомнить американский опыт – там установка так и называется «Поющая», при работе издает громкий свистящий звук. Что-то здесь все связано.

Эта глава написана после большого промежутка времени после написания статьи. Автор нашел еще один температурный диапазон когда вода выделяет скрытую энергию, уже не тепловую а механическую. Пришлось дополнять статью этой второй главой.

Все по порядку. Еще до первой мировой войны в самом начале 20 века произошел курьезный случай. В Европе стали появляться фальшивые металлические монеты высокого качества чеканки. Анализ этих фальшивых монет показал что они изготовлены на прессе который может развивать усилие более 25 тонн. Фальшивомонетчики и до этого использовали разные приспособления для штамповки монет, но все эти приспособления – тески, донкраты, рычаги и прочее устройства не давали высокого качества оттиска как на гидравлических прессах высокого давления. Тайная полиция сбилась с ног, ища этого фальшивомонетчика. Ориентиром для поиска, специалисты по монетам, дали наличие громадного гидравлического пресса – величиной с двух этажный дом, паровая машина и большое потребление угля. Тайная полиция ни как не могла понять, как можно спрятать такую громадину и главное куда. Сколько веревочки не виться все равно конец будет. Фальшивомонетчика поймали. Полицейские и специалисты были удивлены и крайне озадачены – гидравлического пресса не было, а было некое устройство которое можно было спрятать в кармане, и это устройство могло развивать усилие как гидравлический пресс, более 25 тонн, при этом, не потребляя ни какой энергии. Устройство представляло собой стальную толстую квадратную пластину, в которой прорезано квадратное отверстие. Примитивный поршень и плунжеры с орлом и решкой. В поршень заливалась вода, причем очень мало – пол стакана воды. Затем все это устройство ставилось за окно на мороз, на улицу. Вода в поршне замерзала, превращаясь в лед, увеличивала объем – поршень двигался и штамповал монету. Поршень двигался медленно (пропорционально замерзанию воды), но с большим усилием, качество оттиска получалось высочайшего качества.

Тайная полиция засекретила это дело – побоялась, что монеты начнут штамповать, таким способом в каждой подворотне. Все стало известно в середине 20 века, когда появились более совершенные методы защиты денег и монет.

У нас в стране монет ни кто не штампует, но эффект производимый заморозкой воды в системах отопления известен всем — головная боль все коммунальных служб. То там, то здесь происходит заморозка отопительных систем, после этого отопительная система даже не подлежит ремонту – ее надо полностью менять. Стальные трубы разрывает так как будто в них произошел взрыв, создается впечатление, что это не сталь, а бумага.

Лично приходилось видеть разорванные стальные трубы и раскрошенные чугунные радиаторы, после такой аварии. С точки зрения физики все понятно – вода имеет одну плотность, лед другую. Вода, превращаясь в лед, занимает больший объем – расширяясь, разрывает стальные трубы или штампует монеты. А вот с точки зрения энергии чушь полная. Вода отдает свою тепловую энергию (охлаждается) окружающему пространству, при этом совершает механическую работу. Как такое может быть отдавая энергию (тепловую) происходит еще большее выделение энергии (механической)? Что КПД больше 100%?? Во всех учебниках физики написано, что тепловую энергию можно перевести в механическую а механическую в тепловую, то есть эти энергии связаны между собой. Возникает вопрос, а откуда берется дармовая (лишняя) энергия, да еще столько, что достаточно раскрошить чугунный радиатор. Предполагаю что эффект выделения скрытой энергии из воды путем перестроения кристаллической решетки существует в двух температурных диапазонах. Первый температурный диапазон в приделах 0 градусов идет преобразование скрытой энергии кристаллической решетки в механическую. И второй температурный диапазон в приделах 63-65 градусов преобразование скрытой энергии кристаллической решетки в тепловую, об этом температурном диапазоне говорилось в первой главе данный статьи.

Фальшивомонетчики первыми создали техническое устройство извлечения скрытой энергии из воды, методом изменения кристаллической решетки, в добавок это устройство не потребляло ни какой энергии а только отдавало тепловую энергию (охлаждалось) и производила механическую работу, да еще столько что можно сравнить с работой гидравлического пресса высокого давления. Это было сделано более 100 лет тому назад, что касается господина Потапова, который тоже, похоже, изготавливает устройства извлечения скрытой энергии из кристаллической решетки, то здесь надо сказать прямо, что все процессы, которые происходят в его устройствах, до конца не понятны и самому создателю – господину Потапову. Такой категорический вывод, дает мне право делать на основании того, что я лично общался с этим человеком. Кристаллическая решетка это довольно сложная тема, хотя на первый взгляд, кажется простой. Следует упомянуть и о алмазе или графите, а точнее об одном и том же веществе — углероде. С одной кристаллической решетки это невероятно твердое вещество с другой кристаллической решеткой это мягкое вещество. А не подойти ли к вопросу выращивания алмазов с точки зрения циркуляции энергии, природа каким то образом создает эти камни. Вполне возможно, что для выращивания алмаза и не требуются ни каких экзотических условий (давление, температура) а просто надо создать условия циркуляции (превращения) энергии и вещество само будет менять кристаллические решетки.

Возрастающая стоимость энергоресурсов, используемых для теплоснабжения, ставит перед потребителями задачу поиска более дешевых источников тепла. Тепловые установки ТС1 (дисковые вихревые теплогенераторы) - источник тепла XXI века.
Выделение тепловой энергии основано на физическом принципе преобразования одного вида энергии в другой. Механическая энергия вращения электродвигателя передается на дисковый активатор - основной рабочий орган теплогенератора. Жидкость внутри полости активатора закручивается, приобретая кинетическую энергию. Затем, при резком торможении жидкости, возникает кавитация. Кинетическая энергия преобразуется в тепловую, нагревая жидкость до температуры 95 град. С.

Тепловые установки ТС1 предназначены для:

Автономного отопления жилых, офисных, производственных помещений, теплиц, других сельскохозяйственных сооружений и т.п.;
- нагрева воды для бытовых целей, бань, прачечных, бассейнов и т.п.

Тепловые установки ТС1 соответствует ТУ 3113-001-45374583-2003, сертифицированы. Не требуют согласований на установку, т.к. энергия используется для вращения электродвигателя, а не для нагрева теплоносителя. Эксплуатация теплогенераторов с электрической мощностью до 100 кВт осуществляется без лицензии (Федеральный закон № 28-ФЗ от 03.04.96 г.). Они полностью подготовлены для подключения к новой или существующей системе отопления, а конструкция и габариты установки упрощают ее размещение и монтаж. Необходимое напряжение сети - 380 В.
Тепловые установки ТС1 выпускаются в виде модельного ряда с установленной мощностью электродвигателя: 55; 75; 90; 110; 160; 250 и 400 кВт.

Тепловые установки ТС1 работают в автоматическом режиме с любым теплоносителем в заданном диапазоне температур (импульсный режим работы). В зависимости от температуры наружного воздуха время работы составляет от 6 до 12 часов в сутки.
Тепловые установки ТС1 надежны, взрыво - пожаро - безопасны, экологичны, компактны и высокоэффективны в сравнении с другими нагревательными устройствами. Сравнительные характеристики устройств, при отоплении помещений площадью 1000 кв.м. приведены в таблице:


В настоящее время тепловые установки ТС1 эксплуатируются во многих регионах Российской Федерации, ближнем и дальнем зарубежье: в Москве, городах Московской области: в Домодедове, Лыткарино, Ногинске, Рошале, Чехове; в Липецке, Нижнем Новгороде, Туле, и других городах; в Калмыкии, Красноярском и Ставропольском краях; в Казахстане, Узбекистане, Южной Корее и Китае.

Совместно с партнерами мы оказываем полный цикл услуг, начиная от очистки внутренних инженерных систем и агрегатов от твердокристаллических, коррозионных и органических отложений без демонтажа элементов систем в любое время года. Далее - разработка ТЗ (технического задания на проектирование), проектирование, монтаж, пуско-наладка, обучение персонала заказчика и техническое обслуживание.

Поставка тепловых узлов на базе наших установок может осуществляться в блочно-модульном варианте. Автоматизация системы теплоснабжения здания, и внутренних инженерных систем, может быть доведена нами до уровня ИАСУП (индивидуальной автоматической системы управления предприятием).

В случае нехватки места для размещения блочного теплового узла внутри здания они монтируются в специальных контейнерах, как это на практике осуществлено в г. Клин Московской области.
В целях увеличения эксплуатационного ресурса электродвигателей рекомендуется применять системы оптимизации работы электродвигателей, включающие в себя систему плавного пуска и которые мы так же поставляем по согласованию с заказчиком.

Преимущества использования:


  • Простота конструкции и сборки, малые габариты и масса позволяют быстро устанавливать смонтированную на одной платформе установку в любом месте, а также подключать ее непосредственно к действующей схеме отопления.
  • Не требуется водоподготовка.
  • Применение системы автоматического управления не требует постоянного присутствия обслуживающего персонала.
  • Отсутствие тепловых потерь в теплотрассах, при монтаже тепловых станций непосредственно у потребителей тепла.
  • Работа не сопровождается выбросами в атмосферу продуктов горения, других вредных веществ, что позволяет применять его в зонах с ограниченными нормами ПДВ.
  • Сроки окупаемости затрат по внедрению тепловых станций от шести до восемнадцати месяцев.
  • При недостатке мощности трансформатора возможна установка электродвигателя с напряжением питания 6000-10000 вольт (только для 250 и 400 кВт).
  • В системе двойного тарифа при нагреве установкой ночью достаточно небольшого количества воды, аккумуляции ее в баке-накопителе и распределении ее циркуляционным насосом малой мощности в дневное время. Это позволяет сократить затраты на отопление от 40 до 60%.

    НГ-насос генератора; НС-насосная станция; ЭД-электродвигатель; ДТ-датчик температуры;
    РД - реле давления; ГР - гидрораспределитель; М - манометр; РБ - расширительный бачок;
    ТО - теплообменник; ЩУ - щит управления.

    Сравнение существующих отопительных систем.

    Задача экономически эффективного нагрева воды, которая используется в качестве теплоносителя в системах водяного отопления и горячего водоснабжения, была и остается актуальной независимо от способа осуществления этих процессов, конструкции системы отопления и источников получения тепла.

    Известны четыре основных вида источников получения тепла для решения этой задачи:

    · физико-химический (сжигание органического топлива: нефтепродуктов, газа, угля, дров и использование других экзотермических химических реакций);

    · электроэнергетический , когда выделение тепла осуществляется на включенных в электрическую цепь элементах, обладающих достаточно большим омическим сопротивлением;

    · термоядерный , основанный на использовании тепла возникающего при распаде радиоактивных материалов или синтезе тяжелых ядер водорода, в том числе происходящих на солнце и в глубине земной коры;

    · механический , когда тепло получается за счет поверхностного или внутреннего трения материалов. Следует отметить, что свойство трения присуще не только твердым телам, но и жидким и газообразным.

    На рациональный выбор системы отопления влияет много факторов:

    · доступность конкретного вида топлива,

    · экологические аспекты, проектно-архитектурные решения,

    · объем строящегося объекта,

    · финансовые возможности человека и многое другое.

    1. Электрический котел – любые отопительные электрокотлы, из-за теплопотерь, должны покупаться с запасом мощности (+20%). Они достаточно просты в обслуживании, но требуют наличия приличной электрической мощности. Это требует подводки мощного силового кабеля, что не всегда реально сделать за городом.

    Электричество – дорогой вид топлива. Оплата за электроэнергию очень быстро (спустя один сезон) перевалит за стоимость самого котла.

    2. Электрические тэны (воздушные, масляные и др.) – просты в обслуживании.

    Крайне неравномерный прогрев помещений. Быстрое остывание обогреваемого пространства. Большой расход электроэнергии. Постоянное нахождение человека в электрическом поле, дыхание перегретым воздухом. Низкий срок службы. В ряде регионов оплата за электричество, используемое на отопление, производится с увеличивающим коэффициентом К=1,7.

    3. Электрический теплый пол – сложность и дороговизна при монтаже.

    Недостаточен для обогрева помещения в холодное время. Использование в кабеле высокоомного нагревательного элемента (нихром, вольфрам) предусматривает хороший теплоотвод. Проще говоря, ковер на полу создаст предпосылки к перегреву и выходу из строя данной отопительной системы. При использовании кафельной плитки на полу, бетонная стяжка должна высохнуть полностью. Иными словами, первое пробное безопасное включение системы – не менее чем через 45 суток. Постоянное нахождение человека в электрическом и/или электромагнитном поле. Значительное энергопотребление.

    4. Газовый котел – существенные стартовые затраты. Проект, разрешительная документация, подводка газа от магистрали до дома, специальное помещение под котел, вентиляция и мн. другое. Отрицательно сказывается на работе пониженное давление газа в магистралях. Некачественное жидкое топливо приводит к преждевременному износу узлов и агрегатов системы. Загрязнение окружающей среды. Высокие цены на сервисное обслуживание.

    5. Дизельный котел – имеют самую дорогую установку. Дополнительно требуется монтаж емкости для нескольких тонн топлива. Наличие подъездных путей для топливозаправщика. Экологическая проблема. Небезопасны. Дорогой сервис.

    6. Электродные генераторы – требуется высокопрофессиональный монтаж. Крайне небезопасны. Обязательное заземление всех металлических деталей отопления. Высокий риск поражения людей током в случае малейшей неполадки. Требуют не прогнозированного добавления в систему щелочных компонентов. Нет стабильности в работе.

    Тенденция развития источников тепла идет в направлении перехода к экологически чистым технологиям, среди которых в настоящее время наиболее распространенными являются электроэнергетический.

    История создания вихревого теплогенератора

    Удивительные свойства вихря были отмечены и описаны еще 150 лет назад английским ученым Джорджем Стоксом.

    Работая над совершенствованием циклонов для очистки газов от пыли, французский инженер Джозеф Ранке заметил, что струя газа, выходящая из центра циклона, имеет более низкую температуру, чем исходный газ, подаваемый в циклон. Уже в конце 1931 г. Ранке подаёт заявку на изобретенное устройство, названное им "вихревой трубой". Но получить патент ему удаётся только в 1934 г., и то не на родине, а в Америке (Патент США № 1952281).

    Французские же учёные тогда с недоверием отнеслись к этому изобретению и высмеяли доклад Ж. Ранке, сделанный в 1933 г. на заседании Французского физического общества. По мнению этих учёных, работа вихревой трубы, в которой происходило разделение подаваемого в неё воздуха на горячий и холодный потоки, противоречила законам термодинамики. Тем не менее, вихревая труба работала и позже нашла широкое применение во многих областях техники, в основном для получения холода.

    Не зная об опытах Ранке, в 1937 г. советский ученый К. Страхович, в курсе лекций по прикладной газодинамике теоретически доказывал, что во вращающихся потоках газа должны возникать разности температур.

    Интересны работы ленинградца В. Е. Финько, который обратил внимание на ряд парадоксов вихревой трубы, разрабатывая вихревой охладитель газов для получения сверхнизких температур. Он объяснил процесс нагрева газа в пристеночной области вихревой трубы "механизмом волнового расширения и сжатия газа" и обнаружил инфракрасное излучение газа из ее осевой области, имеющее полосовой спектр.

    Законченной и непротиворечивой теории вихревой трубы до сих пор не существует, несмотря на простоту этого устройства. "На пальцах" же объясняют, что при раскручивании газа в вихревой трубе он под действием центробежных сил сжимается у стенок трубы, в результате чего нагревается тут, как нагревается при сжатии в насосе. А в осевой зоне трубы, наоборот, газ испытывает разрежение, и тут он охлаждается, расширяясь. Выводя газ из пристеночной зоны через одно отверстие, а из осевой - через другое, достигают разделения исходного потока газа на горячий и холодный потоки.

    Уже после второй мировой войны - в 1946 г, немецкий физик Роберт Хильш значительно улучшил эффективность вихревой «трубки Ранка». Однако невозможность теоретического обоснования вихревых эффектов отложила техническое применение открытия Ранка-Хильша на десятилетия.

    Основной вклад в развитие основ вихревой теории в нашей стране в конце 50-х - начале 60-х годов прошлого столетия внес профессор Александр Меркулов. Парадокс, но до Меркулова никому и в голову не приходило запустить в «трубку Ранка» жидкость. А произошло следующее: при прохождении жидкости через «улитку» она быстро нагревалась с аномально высокой эффективностью (коэффициент преобразования энергии - около 100%). И опять же полного теоретического обоснования А. Меркулов дать не смог, и до практического применения дело не дошло. Лишь в начале 90-х годов прошлого века появились первые конструктивные решения применения жидкостного теплогенератора, работающего на основе вихревого эффекта.

    Тепловые станции на основе вихревых тепловых генераторов

    Поисковые исследования наиболее экономичных источников получения тепла для нагрева воды привели к идее использования для получения тепла свойств вязкости (трения) воды характеризующих ее способность взаимодействовать с поверхностями твердых тел составляющих материал, в котором она перемещается, и между внутренними слоями жидкости.

    Как любое материальное тело вода испытывает сопротивление своему движению в результате трения о стенки направляющей системы (трубы), однако, в отличие от твердого тела, которое в процессе такого взаимодействия (трения) разогревается и частично начинает разрушаться, приповерхностные слои воды тормозятся, снижают скорость у поверхности и завихряются. При достижении достаточно высоких скоростей вихрения жидкости вдоль стенки направляющей системы (трубы) начинает выделятся тепло поверхностного трения.

    Возникает эффект кавитации, заключающийся в образовании пузырьков пара, поверхность которых вращается с большой скоростью за счет кинетической энергии вращения. Противодействие внутреннему давлению пара и кинетической энергии вращения оказывают давление в массе воды и силы поверхностного натяжения. Таким образом создается состояние равновесия до момента пока пузырек не сталкивается с препятствием при движении потока или между собой. Происходит процесс упругого столкновения и разрушения оболочки с выделением импульса энергии. Как известно величина мощности энергия импульса определяется крутизной его фронта. В зависимости от диаметра пузырьков фронт импульса энергии в момент разрушения пузырька будет иметь различную крутизну, а, следовательно, и различное распределение энергетического спектра частот. астот.

    При определенной температуре и скорость вихрения возникают пузырьки пара, которые ударяясь о препятствия разрушаются с выделением импульса энергии в низкочастотном (звуковом), оптическом и инфракрасном диапазоне частот, при этом температура импульса в инфракрасном диапазоне при разрушении пузырька может составлять десятки тысяч градусов (оС). Размеры образующихся пузырьков и распределение плотности выделяемой энергии по участкам диапазона частот пропорционально линейной скорости взаимодействия трущихся поверхностей воды и твердого тела и обратно пропорционально давлению в воде. В процессе взаимодействия поверхностей трения в условиях сильной турбулентности для получения тепловой энергии, сосредоточенной в инфракрасном диапазоне, необходимо сформировать микропузырьки пара размером в пределах 500- 1500 нм, которые при столкновении с твердыми поверхностями или в областях повышенного давления «лопаются» создавая эффект микрокавитации с выделением энергии в тепловом инфракрасном диапазоне.

    Однако, при линейном движении воды в трубе при взаимодействии со стенками направляющей системы эффект преобразования энергии трения в тепло оказывается небольшим, и, хотя температура жидкости на внешней стороне трубы оказывается несколько выше, чем в центре трубы особого эффекта нагрева не наблюдается. Поэтому одним из рациональных способов решения вопроса увеличения поверхности трения и времени взаимодействия трущихся поверхностей является закручивание воды в поперечном направлении, т.е. искусственное завихрение в поперечной плоскости. При этом возникает дополнительное турбулентное трение между слоями жидкости.

    Вся сложность возбуждения трения в жидкости состоит в том, чтобы удерживать жидкость в положениях, когда поверхность трения оказывается наибольшей и достичь состояния, при котором давление в массе воды, время трения, скорость трения и поверхность трения, были оптимальны для данной конструкции системы и обеспечивалась заданная теплопроизводительность.

    Физика возникновения трения и причины возникающего при этом эффекта выделения тепла, в особенности между слоями жидкости или между поверхностью твердого тела и поверхностью жидкости недостаточно изучена и существуют различные теории, однако, это область гипотез и физических опытов.

    Подробнее о теоретическом обосновании эффекта выделения тепла в теплогенераторе смотри в разделе «Рекомендуемая литература».

    Задача строительства жидкостных (водяных) генераторов тепла состоит в поиске конструкций и способов управления массой водного переносчика, при которых можно было бы получить наибольшие поверхности трения, удерживать в генераторе массу жидкости в течение определенного времени, чтобы получить необходимую температуру и обеспечить при этом достаточную пропускную способность системы.

    С учетом этих условий строятся тепловые станции, которые включают: двигатель (как правило, электрический), который механическим путем приводит в движение воду в генераторе тепла, и насос, обеспечивающий необходимую прокачку воды.

    Поскольку количество тепла в процессе механического трения пропорционально скорости движения поверхностей трения, то для увеличение скорости взаимодействия трущихся поверхностей используется разгон жидкости в поперечном направлении перпендикулярном к направлению основного движения с помощью специальных завихрителей или дисков вращающих поток жидкости, т. е. создание вихревого процесса и реализация таким образом вихревого теплового генератора. Однако конструирование подобных систем является сложной технической задачей поскольку необходимо найти оптимальную область параметров линейной скорости движения, угловой и линейной скорости вращения жидкости, коэффициента вязкости, теплопроводности и не допустить фазового перехода в парообразное состояние или граничное состояние, когда диапазон выделения энергии переместится в оптический или звуковой диапазон, т.е. когда превалирующим становится процесс приповерхностной кавитации в оптическом и низкочастотном диапазоне, который, как известно, разрушает поверхность, на которой образуется кавитационные пузырьки.

    Принципиальная блок-схема тепловой установки с приводом от электродвигателя, приведена на рисунке 1. Расчет системы отопления объекта производится проектной организацией по техническому заданию заказчика. Подбор тепловых установок осуществляется на основании проекта.


    Рис. 1. Принципиальная блок-схема тепловой установки.

    Тепловая установка (ТС1) включает: вихревой теплогенератор (активатор), электродвигатель (электродвигатель и тепловой генератор установлены на опорной раме и механически соединены муфтой) и аппаратуру автоматического управления.

    Вода от насоса прокачки поступает во входной патрубок теплового генератора и выходит из выходного патрубка с температурой от 70-до 95 С.

    Производительность насоса прокачки, обеспечивающая необходимое давление в системе и прокачку воды через тепловую установку, рассчитывается для конкретной системы теплоснабжения объекта. Для обеспечения охлаждения торцевых уплотнений активатора давление воды на выходе из активатора должно быть не менее 0,2 МПа (2 атм.).

    При достижении заданной максимальной температуры воды на выходном патрубке, по команде от датчика температуры тепловая установка выключается. При охлаждении воды до достижения заданной минимальной температуры, по команде от датчика температуры тепловая установка включается. Разница между задаваемыми температурами включения и выключения должна быть не менее 20 оС.

    Устанавливаемая мощность теплового узла выбирается исходя из пиковых нагрузок (одна декада декабря). Для выбора необходимого количества тепловых установок пиковая мощность делится на мощность тепловых установок из модельного ряда. При этом лучше устанавливать большее число менее мощных установок. При пиковых нагрузках и при начальном разогреве системы будут работать все установки, в осеннее - весенние сезоны будет работать только часть установок. При правильном выборе количества и мощности тепловых установок, в зависимости от температуры наружного воздуха и теплопотерь объекта, установки работают 8-12 часов в сутки.

    Тепловая установка надежна в работе, обеспечивает экологическую чистоту в работе, компактна и высокоэффективна по сравнению с любыми другими нагревательными устройствами, не требует и согласований с энергоснабжающей организацией на установку, проста конструктивно и в монтаже, не требуют химической подготовки воды, пригодна к использованию на любых объектах. Тепловая станция полностью укомплектована всем необходимым для подключения к новой или существующей системе отопления, а конструкция и размеры упрощают размещение и монтаж. Станция работает автоматически в заданном диапазоне температур, не требует дежурного обслуживающего персонала.

    Тепловая станция сертифицирована и соответствует ТУ 3113-001-45374583-2003.

    Устройства плавного пуска (софтстартеры).

    Устройства плавного пуска (софтстартеры) предназначены для плавного пуска и останова асинхронных электродвигателей 380 В (660, 1140, 3000 и 6000 В по спецзаказу). Основные области применения: насосное, вентиляционное, дымососное оборудование и т.п.

    Применение устройств плавного пуска позволяет уменьшить пусковые токи, снизить вероятность перегрева двигателя, обеспечить полную защиту двигателя, повысить срок службы двигателя, устранить рывки в механической части привода или гидравлические удары в трубах и задвижках в момент пуска и останова двигателей.

    Микропроцессорное управление моментом с 32-символьным дисплеем

    Ограничение тока, бросок момента, двойной наклон кривой разгона

    Плавный останов двигателя

    Электронная защита двигателя:

    Перегрузка и КЗ

    Пониженное и повышенное напряжение сети

    Заклинивание ротора, защита от затянувшегося запуска

    Пропадание и/или дисбаланс фаз

    Перегрев устройства

    Диагностика состояния, ошибок и сбоев

    Дистанционное управление

    Модели от 500 до 800 кВт поставляются по спецзаказу. Состав и условия поставки формируются при согласовании технического задания.

    Теплогенераторы на основе «вихревой трубы».

    Вихревую трубу теплогенератора, схема которого приведена на Рис. 1, присоединяют инжекторным патрубком 1 к фланцу центробежного насоса (на рисунке не показан), подающему воду под давлением 4 – 6 атм. Попадая в улитку 2, поток воды сам закручивается в вихревом движении и поступает в вихревую трубу 3, длина которой в 10 раз больше ее диаметра. Закрученный вихревой поток в трубе 3 перемещается по винтовой спирали у стенок трубы к ее противоположному (горячему) концу, заканчивающемуся донышком 4 с отверстием в его центре для выхода горячего потока. Перед донышком 4 закреплено тормозное устройство 5 – спрямитель потока, выполненный в виде нескольких плоских пластин, радиально приваренных к центральной втулке, сосной с трубой 3. В виде сверху он напоминает оперение авиабомбы.

    Когда вихревой поток в трубе 3 движется к этому спрямителю 5, в осевой зоне трубы 3 образуется противоток. В нем вода тоже вращаясь движется к штуцеру 6, врезанному в плоскую стенку улитки 2 соосно с трубой 3 и предназначенному для выпуска «холодного» потока. В штуцере 6 установлен еще один спрямитель потока 7, аналогичный тормозному устройству 5. Он служит для частичного превращения энергии вращения «холодного» потока в тепло. Выходящая теплая вода направляется по байпасу 8 в патрубок 9 горячего выхода, где она смешивается с горячим потоком, выходящим из вихревой трубы через спрямитель 5. Из патрубка 9 нагретая вода поступает либо непосредственно к потребителю, либо в теплообменник, передающий тепло в контур потребителя. В последнем случае отработанная вода первичного контура (уже с меньшей температурой) возвращается в насос, который вновь подает ее в вихревую трубу через патрубок 1.

    Особенности монтажа систем отопления с использованием теплогенераторов на основе «вихревых» труб.

    Теплогенератор на основе «вихревой» трубы должен подключаться к системе отопления только через бак-аккумулятор.

    При первом включении теплогенератора, до его выхода на рабочий режим, прямая магистраль системы отопления должна быть перекрыта, то есть теплогенератор должен работать по «малому контуру». Теплоноситель в баке аккумуляторе нагревается до температуры 50-55 оС. Затем производится периодическое открытие крана на выходной магистрали на ¼ хода. При увеличении температуры в магистрали системы отопления кран открывается еще на ¼ хода. Если происходит падение температуры в баке-аккумуляторе на 5 оС, кран прикрывается. Открытие - закрытие крана производится до полного прогрева системы отопления.

    Данная процедура обусловлена тем, что при резкой подаче холодной воды на вход «вихревой» трубы, в следствии ее малой мощности, может произойти «срыв» вихря и потеря эффективности работы тепловой установки.

    Из опыта эксплуатации систем теплоснабжения рекомендуемые температуры:

    В выходной магистрали 80 оС,

    Ответы на Ваши вопросы

    1. Какие преимущества данного теплогенератора перед другими источниками тепла?

    2. В каких условиях может работать теплогенератор?

    3. Требования к теплоносителю: жесткость (для воды), содержание солей и т.д., то есть что может критично сказаться на внутренних частях теплогенератора? Будет ли образовываться накипь на трубах?

    4. Что такое установленная мощность электродвигателя?

    5. Сколько теплогенераторов нужно устанавливать в тепловом узле?

    6. Какова производительность теплогенератора?

    7. До какой температуры можно нагревать теплоноситель?

    8. Можно ли регулировать температурный режим изменением числа оборотов электродвигателя?

    9. Какая может быть альтернатива воде для предохранения от замерзания жидкости в случае «ЧП» с электроэнергией?

    10. Каков диапазон рабочих давлений теплоносителя?

    11. Нужен ли циркуляционный насос и как выбрать его мощность?

    12. Что входит в комплект тепловой установки?

    13. Какова надежность автоматики?

    14. Как сильно шумит теплогенератор?

    15. Можно ли использовать в тепловой установки однофазные электродвигатели с напряжением 220 В?

    16. Можно ли использовать для вращения активатора теплогенератора дизельные двигатели или другой привод?

    17. Как выбрать сечение кабеля электропитания тепловой установки?

    18. Какие согласования нужно проводить для получения разрешения на установку теплогенератора?

    19. Какие основные неисправности возникают при эксплуатации теплогенераторов?

    20. Разрушает ли кавитация диски? Какой ресурс тепловой установки?

    21. В чем отличия дисковых и трубчатых теплогенераторов?

    22. Каков коэффициент преобразования (отношение полученной тепловой энергии к затраченной электрической) и каким образом он определен?

    24. Готовы ли разработчики обучить персонал для обслуживания теплогенератора?

    25. Почему гарантия на тепловую установку 12 месяцев?

    26. В какую сторону должен вращаться теплогенератор?

    27. Где входной и выходной патрубки теплогенератора?

    28. Как задать температуру включения-выключения тепловой установки?

    29. Каким требованиям должен соответствовать тепловой пункт, в котором монтируются тепловые установки?

    30. На объекте ООО «Рубеж» г. Лыткарино в складских помещениях поддерживается температура 8-12 оС. Можно ли поддерживать с помощью такой тепловой установки температуру 20 оС?

    В1: Какие преимущества данного теплогенератора перед другими источниками тепла?

    О: При сравнении с газовыми и жидкотопливными котлами главное преимущество теплогенератора заключается в полном отсутствии инфраструктуры обслуживания: не нужна котельная, обслуживающий персонал, химподготовка и регулярная профилактика. Например, при отключении электричества теплогенератор снова включится автоматически, в то время как для повторного включения жидкотопливных котлов требуется присутствие человека. При сравнении с электроотоплением (ТЭНы, электрокотлы), теплогенератор выигрывает как и в обслуживании (отсутствие прямых нагревательных элементов, водоподготовки), так и в экономическом выражении. При сравнении с теплоцентралью теплогенератор позволяет отапливать каждое здание отдельно, что исключает потери при доставке тепла и отпадает потребность в ремонте теплосети и ее эксплуатации. (Подробнее см. раздел сайта «Сравнение существующих отопительных систем»).

    В2: В каких условиях может работать теплогенератор?

    О: Условия работы теплогенератора определяются техническими условиями на его электродвигатель. Возможна установка электродвигателей во влагозащитном, пылезащитном, тропическом исполнении.

    В3: Требования к теплоносителю: жесткость (для воды), содержание солей и т.д., то есть что может критично сказаться на внутренних частях теплогенератора? Будет ли образовываться накипь на трубах?

    О: Вода должна соответствовать требованиям ГОСТ Р 51232-98. Дополнительная водоподготовка не требуется. Перед входным патрубком теплогенератора необходимо устанавливать фильтр грубой очистки. В процессе эксплуатации накипь не образовывается, ранее имевшаяся накипь разрушается. Не допускается использование в качестве теплоносителя воды с повышенным содержанием солей и карьерной жидкости.

    В4: Что такое установленная мощность электродвигателя?

    О: Установленная мощность электродвигателя это – мощность необходимая для раскрутки активатора теплогенератора при запуске. После выхода двигателя на рабочий режим, потребляемая мощность падает на 30-50%.

    В5: Сколько теплогенераторов нужно устанавливать в тепловом узле?

    О: Устанавливаемая мощность теплового узла выбирается исходя из пиковых нагрузок (- 260С одна декада декабря). Для выбора необходимого количества тепловых установок пиковая мощность делится на мощность тепловых установок из модельного ряда. При этом лучше устанавливать большее число менее мощных установок. При пиковых нагрузках и при начальном разогреве системы будут работать все установки, в осеннее - весенние сезоны будет работать только часть установок. При правильном выборе количества и мощности тепловых установок, в зависимости от температуры наружного воздуха и теплопотерь объекта, установки работают 8-12 часов в сутки. Если поставить более мощные тепловые установки они будут работать меньшее время, менее мощные – большее время, но расход электроэнергии будет один и тот же. Для укрупненного расчета энергопотребления тепловой установки за отопительный сезон применяется коэффициент 0,3. Не рекомендуется использовать в тепловом узле только одну установку. При использовании одной тепловой установки необходимо иметь резервное устройство отопления.

    В6: Какова производительность теплогенератора?

    О: За один проход вода в активаторе нагревается на 14-20оС. В зависимости от мощности, теплогенераторы прокачивают: ТС1-055 – 5,5 м3/час; ТС1-075 – 7,8 м3/час; ТС1-090 – 8,0 м3/час. Время нагрева зависит от объема системы отопления и ее теплопотерь.

    В7: До какой температуры можно нагревать теплоноситель?

    О: Максимальная температура нагрева теплоносителя 95оС. Эта температура определяется характеристиками устанавливаемых торцевых уплотнений. Теоретически возможен нагрев воды до 250 оС, но для создания теплогенератора с такими характеристиками необходимо проведение НИИОКР.

    В8: Можно ли регулировать температурный режим изменением числа оборотов?

    О: Конструкция тепловой установки рассчитана на работу при оборотах двигателя 2960 + 1,5%. На других оборотах двигателя эффективность теплогенератора снижается. Регулирование температурного режима осуществляется включением-выключением электродвигателя. При достижении заданной максимальной температуры электродвигатель выключается, при охлаждении теплоносителя до минимальной заданной температуры – включается. Диапазон заданных температур должен быть не менее 20ОС

    В9: Какая может быть альтернатива воде для предохранения от замерзания жидкости в случае «ЧП» с электроэнергией?

    О: Теплоносителем может выступать любая жидкость. Возможно использование тосола. Не рекомендуется использовать в тепловом узле только одну установку. При использовании одной тепловой установки необходимо иметь резервное устройство отопления.

    В10: Каков диапазон рабочих давлений теплоносителя?

    О: Теплогенератор рассчитан на работу в диапазоне давлений от 2 до 10 атм. Активатор только закручивает воду, давление в системе отопления создается за счет циркуляционного насоса.

    В11: Нужен ли циркуляционный насос и как выбрать его мощность?

    О: Производительность насоса прокачки, обеспечивающая необходимое давление в системе и прокачку воды через тепловую установку, рассчитывается для конкретной системы теплоснабжения объекта. Для обеспечения охлаждения торцевых уплотнений активатора давление воды на выходе из активатора должно быть не менее 0,2 МПа (2 атм.) Усредненная производительность насоса для: ТС1-055 – 5,5 м3/час; ТС1-075 – 7,8 м3/час; ТС1-090 – 8,0 м3/час. Насос является нагнетающим, устанавливается перед тепловой установкой. Насос является принадлежностью системы теплоснабжения объекта и в комплект поставки тепловой установки ТС1 не входит.

    В12: Что входит в комплект тепловой установки?

    О: В комплект поставки тепловой установки входят:

    1. Вихревой теплогенератор ТС1-______ № ______________
    1 шт

    2. Щит управления ________ № _______________
    1 шт

    3. Рукава напорные (гибкие вставки) с фитингами Ду25
    2 шт

    4. Датчик температуры ТСМ 012-000.11.5 L=120 кл. В
    1 шт

    5. Паспорт на изделие
    1 шт

    В13: Какова надежность автоматики?

    О: Автоматика сертифицирована производителем и имеет гарантийный срок работы. Возможно комплектование тепловой установки щитом управления или контроллером асинхронных электродвигателей «ЭнерджиСейвер».

    В14: Как сильно шумит теплогенератор?

    О: Сам активатор тепловой установки практически не шумит. Шумит только электродвигатель. В соответствии с техническими характеристиками электродвигателей, указанных в их паспортах, Максимально допустимый уровень звуковой мощности электродвигателя – 80-95 дБ (А). Для снижения уровня шума и вибрации необходимо монтировать тепловую установку на вибропоглощающие опоры. Применение контроллеров асинхронных электродвигателей «ЭнерджиСейвер» позволяет в полтора раза снизить уровень шума. В производственных зданиях тепловой установки размещаются в отдельных помещениях, подвалах. В жилых и административных зданиях тепловой пункт может быть расположен автономно.

    В15: Можно ли использовать в тепловой установки однофазные электродвигатели с напряжением 220 В?

    О: Выпускаемые в настоящее время модели тепловых установок не допускают использования однофазных электродвигателей с напряжением 220 В.

    В16: Можно ли использовать для вращения активатора теплогенератора дизельные двигатели или другой привод?

    О: Конструкция тепловой установки типа ТС1 рассчитана на стандартные асинхронные трехфазные двигатели напряжением 380 в. с частотой вращения 3000 об/мин. Принципиально вид двигателя не имеет значения, необходимым условием является только обеспечение частоты вращения 3000 об/мин. Однако, для каждого такого варианта двигателя, конструкция рамы тепловой установки должна проектироваться индивидуально.

    В17: Как выбрать сечение кабеля электропитания тепловой установки?

    О: Сечение и марку кабелей необходимо выбрать в соответствие с ПУЭ – 85 по расчетным токовым нагрузкам.

    В18: Какие согласования нужно проводить для получения разрешения на установку теплогенератора?

    О: Согласования на установку не требуются, т.к. электроэнергия используется для вращения электродвигателя, а не для нагрева теплоносителя. Эксплуатация теплогенераторов с электрической мощностью до 100 кВт осуществляется без лицензии (Федеральный закон № 28-ФЗ от 03.04.96 г.).

    В19: Какие основные неисправности возникают при эксплуатации теплогенераторов?

    О: Большинство отказов происходит вследствие неправильной эксплуатации. Работа активатора при давлении менее 0,2 МПа приводит к перегреву и разрушению торцевых уплотнений. Работа при давлении более 1,0 МПа также приводит к потере герметичности торцевых уплотнений. При неправильном подключении элетродвигателя (звезда-треугольник) двигатель может сгореть.

    В20: Разрушает ли кавитация диски? Какой ресурс тепловой установки?

    О: Четырехлетний опыт эксплуатации вихревых теплогенераторов показывает, что активатор практически не изнашивается. Меньший ресурс имеют электродвигатель, подшипники и торцевые уплотнения. Срок эксплуатации комплектующих указывается в их паспортах.

    В21: В чем отличия дисковых и трубчатых теплогенераторов?

    О: В дисковых теплогенераторах вихревые потоки создаются за счет вращения дисков. В трубчатых теплогенераторах закручивается в «улитке», а затем тормозится в трубе выделяя тепловую энергию. При этом эффективность трубчатых теплогенераторов на 30% ниже, чем у дисковых.

    В22: Каков коэффициент преобразования (отношение полученной тепловой энергии к затраченной электрической) и каким образом он определен?

    О: Ответ на этот вопрос Вы найдете в нижеприведенных Актах.

    Акт результатов эксплутационных испытаний вихревого теплогенератора дискового типа марки ТС1-075

    Акт об испытании тепловой установки ТС-055

    О: Эти вопросы отражены в проекте на объект. При расчете требуемой мощности теплогенератора, наши специалисты по техническим условия заказчика рассчитывают также и теплосъем системы отопления, дают рекомендации по оптимальной разводке теплосети в здании, а также и по месту установки теплогенератора.

    В24: Готовы ли разработчики обучить персонал для обслуживания теплогенератора?

    О: Наработка торцового уплотнения до замены 5 000 часов беспрерывной работы (~ 3 года). Наработка двигателя до замены подшипника 30 000 часов. Тем не менее, рекомендуется раз в год в конце отопительного сезона проводить профилактический осмотр электродвигателя и системы автоматического управления. Наши специалисты готовы обучить персонал Заказчика для проведения всех профилактических и ремонтных работ. (Подробнее см. раздел сайта «Обучение персонала»).

    В25: Почему гарантия на тепловую установку 12 месяцев?

    О: Гарантийный срок 12 месяцев один из наиболее распространенных гарантийных сроков. Производители комплектующих тепловой установки (щитов управления, соединительных шлангов, датчиков и т.д.) устанавливают на свои изделия гарантийный срок 12 месяцев. Гарантийный срок установки в целом не может быть больше, чем гарантийный срок ее комплектующих, поэтому в технических условиях на изготовление тепловой установки ТС1 задается такой гарантийный срок. Опыт эксплуатации тепловых установок ТС1 показывает, что ресурс активатора может составить не менее 15 лет. Накопив статистику и согласовав с поставщиками увеличение гарантийного срока на комплектующие, мы сможем увеличить гарантийный срок тепловой установки до 3 лет.

    В26: В какую сторону должен вращаться теплогенератор?

    О: Направление вращения теплогенератора задается электродвигателем, который вращается по часовой стрелке. При пробных пусках вращение активатора против часовой стрелки не приведет к его поломке. Перед первыми пусками необходимо проверить свободный ход роторов, для этого теплогенератор на один/половину оборота прокручивается вручную.

    В27: Где входной и выходной патрубки теплогенератора?

    О: Входной патрубок активатора теплогенератора расположен со стороны электродвигателя, выходной патрубок – с противоположной стороны активатора.

    В28: Как задать температуру включения-выключения тепловой установки?

    О: Инструкция по установке температуры включения-выключения тепловой установки приведена в разделе «Партнеры» / «Овен».

    В29: Каким требованиям должен соответствовать тепловой пункт, в котором монтируются тепловые установки?

    О: Тепловой пункт, в котором монтируются тепловые установки, должен соответствовать требованиям СП41-101-95. Текст документа можно скачать с сайта: «Информация по теплоснабжению», www.rosteplo.ru

    В30: На объекте ООО «Рубеж» г. Лыткарино в складских помещениях поддерживается температура 8-12 оС. Можно ли поддерживать с помощью такой тепловой установки температуру 20 о С?

    О: В соответствии с требованиями СНиП тепловая установка может нагревать теплоноситель до максимальной температуры 95 оС. Температуру в обогреваемых помещениях задает с помощью ОВЕНА сам потребитель. Одна и та же тепловая установка может поддерживать температурные диапазоны: для складских помещений 5-12 оС; для производственных 18-20 оС; для жилых и офисных 20-22 оС.

  • Вихревой теплогенератор состоит из двигателя и кавитатора. В кавитатор подается вода (или другая жидкость). Двигатель раскручивает механизм кавитатора, в котором происходит процесс кавитации (схлопывания пузырьков). За счет этого, происходит нагрев жидкости, подаваемой в кавитатор. Подводимая электроэнергия расходуется на следующие цели: 1- нагрев воды, 2 - преодоление силы трения в двигателе и кавитаторе, 3- излучение звуковых колебаний (шум). Разработчики и производители утверждают, что принцип действия основан "на использовании возобновляемой энергии". При этом, не понятно, откуда эта энергия берется. Тем не менее, не происходит никакого дополнительного излучения. Соответственно, можно предположить, что вся энергия, подводимая к теплогенератору, тратится на нагрев воды. Таким образом, можно говорить о КПД, близком к 100%. Но не более...
    Но перейдем от теории к практике.

    На заре развития «вихревых теплогенераторов» предпринимались попытки проведения независимой экспертизы. Так, известная модель ЮСМАР изобретателя Ю.С.Потапова из Молдовы тестировалась американской компанией Earth Tech International (г.Остин, штат Техас), специализирующейся на экспериментальной верификации новых направлений в современной физике. В 1995 г. были проведены пять серий экспериментов по измерению соотношения между генерируемой тепловой и потребляемой электрической энергией. Заметим, что все многочисленные модификации испытуемого устройства, предназначенные для разных серий экспериментов, лично согласовывались с Ю.С.Потаповым в ходе визита одного из сотрудников компании в Молдову. Подробнейшее описание конструкции испытуемого теплогенератора с вихревой трубой, режимные параметры, методики проведения измерений и результаты приводятся на сайте компании www.earthtech.org/experiments/.

    Для привода водяного насоса использовался электродвигатель с КПД=85%, тепловые потери которого на нагрев окружающего воздуха не принимались при расчете теплопроизводительности «вихревого теплогенератора». Отметим, что не измерялись и тепловые потери на нагрев окружающего воздуха, что, безусловно, несколько снижало получаемый КПД теплогенератора.

    Результаты исследований, проведенных при варьировании основных режимных параметров (давление, расход теплоносителя, начальная температура воды и др.) в широком диапазоне продемонстрировали, что эффективность теплогенератора изменяется в диапазоне от 33 до 81%, что сильно не «дотягивает» до 300%, заявленных изобретателем перед проведением экспериментов.

    Хотя по "тепловому вихрегенератору" расскажу...
    Были некоторые примеры значительной экономии денежных средств на отопление в переходные периоды нашей экономики, когда деньги предприятий начинали считать. Сразу скажу, что с связано это с гримасами экономики, а совсем не с теплотехникой.

    Скажем, некоторое предприятие желает отапливать свои помещения. Ну холодно им видите ли.
    По некоторым причинам, ясно каким, не может вложиться в Газовую трубу, строить свою котельную на угле, мазуте - не хватает масштабов, а центральное отопление отсутствует или далеко.
    Остается электричество, но при получении разрешения на использование электроэнергии в термальных целях устанавливали предприятию тариф, превышающий в несколько раз обычный.
    Такие были раньше правила, и не только в России, но в Украине, Молдове и др. государствах, которые отпочковались от нас.
    Вот тут приходил на помощь г-н Потапов и подобные.
    Покупали чудо-устройство, тариф на электроэнергию для электродвигателей оставался обычный, тепловой КПД естественно никак больше сотни быть не мог, а вот в денежном отношении КПД был и 200 и 300, смотря во сколько раз сэкономили на тарифе.
    Применяя ТН можно было достичь еще большей экономии, но для тех времен и вихретеплогенератора с эффективностью якобы 1,2-1,5 вполне было достаточно.
    Ведь еще больший заявляемый КПД мог только повредить и отпугнуть покупателей, ведь квоты на электроснабжение выделялись по потребляемой мощности, а давал генератор тепла столько-же, если не меньше, в связи с потерями по cos Ф.
    По теплопотерям помещений в 30-40% погрешности еще как-то можно было уложиться, списать на колебания погоды.
    Сейчас это ушло в прошлое, но тема вихрегенераторов по инерции продолжает всплывать, и ведь находятся дураки, которые покупают, клюнув на информацию с фотками и адресами, что ряд уважаемых предприятий в свое время использовали их у себя и экономили большую кучу денег.
    Только всей подоплеки им никто не рассказывает.

    В современных условиях приобретение собственного устройства по производству и подаче тепла обходится покупателям в достаточно крупную сумму. Для экономии средств или при отсутствии возможности приобрести теплоисточник в магазине есть резонные основания сконструировать теплогенератор своими руками. Существует несколько разновидностей подобныхпроектов. Выбор зависит от технических возможностей владельца или задач, которые требуется решить с помощью теплогенерирующей системы.

    Преимущества самодельного теплопроизводства

    В целом есть два типа устройств: статические и роторные. Если в первом варианте в основе конструкции есть сопло, то другие машины создают кавитацию с помощью ротора. Эти вихревые конструкции можно сравнить между собой и выбрать подходящий вариант для сборки.

    Теплогенератор, своими руками сконструированный, поможет обеспечить комфортным температурным режимом загородный дом, дачу, отдельный коттедж, квартиру - при отсутствии централизованного отопления, его дефектах, перебоях или авариях.

    Также подобные устройства помогают компенсировать расходы на тепло, выбрать оптимальный вариант энергоснабжения. Они несложны в конструкционном плане и экономичны, экологически безопасны.

    Как сделать теплогенератор своими руками?

    Для сборки потребуются следующие материалы и инструменты:

    Достаточное количество труб, соответствующих помещению по длине и ширине;
    - перфоратор (дрель) для сверления труб;
    - насос;
    - кавитатор любой разновидности;
    - манометр;
    - термометр для замера уровня тепла и гильзы для него;
    - краны для отопительных систем;
    - двигатель на электрической основе.

    Для систем разного типа могут потребоваться дополнительные комплектующие. Но в целом самодельные отопительные приборы вполне доступны для конструирования и настройки всем желающим.

    Кавитационная конструкция

    Кавитационный теплогенератор своими руками можно сделать на основе который часто имеется в ванной, скважине, системе водоснабжения коттеджа. Низкая эффективность такого насоса может быть преобразована в энергию кавитационного нагревателя. Произойдет переход механической энергии в тепловую. Этот принцип часто используют в промышленности.

    Кавитационный теплогенератор своими руками изготавливается на основе насоса, нагнетающего давление над соплом. Недостаток кавитацинного прибора - высокий уровень шума, большая мощность, неуместная в небольших помещениях, редкие материалы, габариты - даже миниатюрная модель займет 1,5 квадратных метра.

    Обогрев на дровах

    Теплогенератор на дровах, своими руками сделанный, обеспечит стабильный обогрев помещений при отсутствии централизованного отопления и наличия достаточного количества древесного топлива. Как бы ни развивались технологии и строительные методы, дровяная печь, камин спасут при перебоях с теплоснабжением.

    Для отопления на дровах осуществляется или традиционной печки.

    Но такие системы требуют тщательного соблюдения норм безопасности. Важно определиться с местом установки печи - массивные агрегаты не всегда можно разместить в дачных домиках.

    Сделать теплогенератор на дровах своими руками - это хорошее решение при необходимости автономного обогрева комнат. Иногда это действительно единственный возможный вариант отопления.

    Устройство Потапова

    Теплогенератор Потапова своими руками можно сделать с использованием следующих материалов:

    Шлифовальная машина для углов;
    - сварочный прибор;
    - дрель и сверла;
    - на 12 и 13;
    - разные болты, гайки, шайбы;
    - металлические уголки;
    - краски и грунтовки.

    Теплогенератор Потапова, своими руками сделанный, позволяет вырабатывать тепло на основе электрического двигателя с использованием насоса. Это очень экономичный вариант, изготовить который достаточно просто из обычных деталей.
    Двигатель выбирают в зависимости от существующего напряжения - 220 или 380 В.

    С него начинают сборку, закрепляя на станине. Выполняется металлический каркас из угольника, сварка и болты, гайки помогают закрепить всю конструкцию. Делаются отверстия для болтов, внутри размещается двигатель, каркас покрывают краской. Затем подбирают центробежный насос, который будет раскручиваться двигателем. Насос устанавливают на раме, однако в данном случае потребуется соединительная муфта с токарного станка, которую можно заказать на заводе. Важно утеплить генератор специальным кожухом из жестяных листов или алюминия.

    Генератор Френетта

    Теплогенератор Френетта своими руками делают многие любители технических экспериментов - этот агрегат известен невероятно высоким КПД и большим разнообразием моделей. Однако многие из этих тепловых насосов достаточно дороги.

    Теплогенератор Френетта своими руками можно сделать из следующих комплектующих:
    - ротора;
    - статора;
    - лопастного вентилятора;
    - вала и др.
    Статор и ротор выполняют роль цилиндров, один внутри другого. В большой заливается масло, малый цилиндр за счет своих оборотов нагревает всю систему. Вентилятор обеспечивает подачу горячего воздуха. Это достаточно простая модель теплового насоса, которая поддается усовершенствованию. В дальнейшем можно заменить внутренний цилиндр дисками из стали или убрать вентилятор.
    Высокий уровень КПД обеспечивается циркуляцией носителя тепла (масла) в закрытой системе. Нет теплообменника, но мощность нагрева достаточно высокая. Эта система экономит затраты, которые обычно нужно выделять на другие виды обогрева.

    Генератор на магните

    Магнитные системы обогрева относятся к вихревому типу и работают на основе В процессе функционирования образуется электромагнитное поле, чью энергию нагреваемые объекты поглощают и преобразовывают в тепловую. В основе такого агрегата лежит индукционная катушка - многовитковая цилиндрическая, при проходе через которую электрический ток создает магнитное поле переменного состояния.

    Магнитный теплогенератор своими руками делают из элементов: сопло и манометр на выходе, термометр с гильзами, краны и индукционные элементы. Если разместить нагреваемый объект вблизи такого агрегата, создаваемый поток магнитной индукции будет пронизывать нагреваемый объект. Линии электрического поля располагаются перпендикулярно направлению магнитных частиц и идут по замкнутому кругу.

    В процессе расхождения вихревых потоков электричества энергия трансформируется в тепловую - происходит нагревание объекта.

    Магнитный теплогенератор, своими руками изготовленный (с инвертором), позволяет использовать силу магнитных полей для запуска насоса, быстро прогреть помещение и любые вещества до высоких температур. Такие нагреватели могут не только нагреть воду до нужной температуры, но и расплавить металлы.

    Генератор на дизеле

    Своими руками собранный, поможет эффективно решить проблему обогрева непрямым способом. Весь обогревательный процесс в таких агрегатах полностью автоматизирован, дизельный прибор можно использовать в и промышленных нуждах.
    Основной вид топлива в данном случае - дизель или керосин. Устройство представляет собой пушку, которая формируется из корпуса (кожуха), топливного бака и присоединенного насоса, а также очистного фильтра и камеры сгорания. Топливный бак помещают внизу агрегата для удобства подачи ресурса.

    Дизельный теплогенератор, своими руками сделанный, поможет эффективно и оперативно обогреть помещение достаточно экономичным способом.

    Также топливом может служить агрегаты имеют форсунку, которая распыляет топливо по мере его выгорания, но в некоторых вариантах подача может производится капельным методом. При расчете на непрерывную работу заправлять генератор необходимо дважды в течение суток.

    Испытание конструкции

    Теплогенератор, своими руками изготовленный, будет работать максимально эффективно, если провести предварительные испытания всей системы и исправить возможные дефекты:
    - все поверхности должны быть защищены краской;
    - корпус должен быть из толстого материала из-за очень агрессивных процессов кавитации;
    - входные отверстия должны быть разного размера - так можно будет регулировать производительность;
    - гаситель колебаний нужно регулярно менять.
    Лучше иметь специальный лабораторный участок, где будут проходить тесты генераторов.

    Оптимальный вариант - при котором вода нагревается сильнее за одинаковые отрезки времени, этому прибору можно отдать предпочтение и в дальнейшем его совершенствовать.

    Отопление дома, гаража, офиса, торговых площадей – вопрос, решать который надо сразу после того, как помещение построено. И не важно, какое время года на улице. Зима всё равно придёт. Так что побеспокоиться о том, чтобы внутри было тепло необходимо заранее. Тем, кто покупает квартиру в многоэтажном доме, волноваться не о чем – строители уже всё сделали. А вот тем, кто строит свой дом, оборудует гараж или отдельно стоящее небольшое здание, придётся выбирать, какую систему отопления устанавливать. И одним из решений будет вихревой теплогенератор.

    Сепарация воздуха, иначе говоря, разделение его на холодную и горячую фракции в вихревой струе – явление, которое и легло в основу вихревого теплогенератора, было открыто около ста лет назад. И как это часто бывает, лет 50 никто не мог придумать, как его использовать. Так называемую вихревую трубу модернизировали самыми разными способами и пытались пристроить практически во все виды человеческой деятельности. Однако везде она уступала и по цене и по КПД уже имеющимся приборам. Пока русский учёный Меркулов не придумал запустить внутрь воду, не установил, что на выходе температура повышается в несколько раз и не назвал этот процесс кавитацией. Цена прибора уменьшилась не намного, а вот коэффициент полезного действия стал практически стопроцентным.

    Принцип действия


    Так что же такое эта загадочная и доступная кавитация? А ведь всё довольно просто. Во время прохождения через вихрь, в воде образуется множество пузырьков, которые в свою очередь лопаются, высвобождая некое количество энергии. Эта энергия и нагревает воду. Количество пузырьков подсчёту не поддаётся, а вот температуру воды вихревой кавитационный теплогенератор может повысить до 200 градусов. Не воспользоваться этим было бы глупо.

    Два основных вида

    Несмотря на то и дело появляющиеся сообщения о том, что кто-то где-то смастерил уникальный вихревой теплогенератор своими руками такой мощности, что можно отапливать целый город, в большинстве случаев это обычные газетные утки, не имеющие под собой никакой фактической основы. Когда-нибудь, возможно, это случиться, а пока принцип работы этого прибора можно использовать только двумя способами.

    Роторный теплогенератор. Корпус центробежного насоса в этом случае будет выступать в качестве статора. В зависимости от мощности по всей поверхности ротора сверлят отверстия определённого диаметра. Именно за счёт их и появляются те самые пузырьки, разрушение которых и нагревает воду. Достоинство у такого теплогенератор только одно. Он намного производительнее. А вот недостатков существенно больше.

    • Шумит такая установка очень сильно.
    • Изношенность деталей повышенная.
    • Требует частой замены уплотнителей и сальников.
    • Слишком дорогое обслуживание.

    Статический теплогенератор. В отличие от предыдущей версии, здесь ничего не вращается, а процесс кавитации происходит естественным путём. Работает только насос. И список достоинств и недостатков принимает резко противоположное направление.

    • Прибор может работать при низком давлении.
    • Разница температур на холодном и горячих концах довольно велика.
    • Абсолютно безопасен, в каком бы месте не использовался.
    • Быстрый нагрев.
    • КПД 90 % и выше.
    • Возможность использования, как для обогрева, так и для охлаждения.

    Единственным недостатком статического ВТГ можно считать дороговизну оборудования и связанную с этим довольно долгую окупаемость.

    Как собрать теплогенератор


    При всех этих научных терминах, которые могут напугать незнакомого с физикой человека, смастерить в домашних условиях ВТГ вполне возможно. Повозиться, конечно, придётся, но если всё сделать правильно и качественно, можно будет наслаждаться теплом в любое время.

    И начать, как и в любом другом деле, придётся с подготовки материалов и инструментов. Понадобятся:

    • Сварочный аппарат.
    • Шлифмашинка.
    • Электродрель.
    • Набор гаечных ключей.
    • Набор свёрл.
    • Металлический уголок.
    • Болты и гайки.
    • Толстая металлическая труба.
    • Два патрубка с резьбой.
    • Соединительные муфты.
    • Электродвигатель.
    • Центробежный насос.
    • Жиклёр.

    Вот теперь можно приступать непосредственно к работе.

    Устанавливаем двигатель

    Электродвигатель, подобранный в соответствии с имеющимся напряжением, устанавливается на станину, сваренную или собранную с помощью болтов, из уголка. Общий размер станины вычисляется таким образом, чтобы на ней можно было разместить не только двигатель, но и насос. Станину лучше покрасить во избежание появления ржавчины. Разметить отверстия, просверлить и установить электродвигатель.

    Подсоединяем насос

    Насос следует подбирать по двум критериям. Во-первых, он должен быть центробежным. Во вторых, мощности двигателя должно хватить, чтобы его раскрутить. После того, как насос будет установлен на станину, алгоритм действий следующий:

    • В толстой трубе диаметром 100 мм и длиной 600 мм с двух сторон нужно сделать внешнюю проточку на 25 мм и в половину толщины. Нарезать резьбу.
    • На двух кусках такой же трубы длинной каждый 50 мм нарезать внутреннюю резьбу на половину длины.
    • Со стороны противоположной от резьбы приварить металлические крышки достаточной толщины.
    • По центру крышек сделать отверстия. Одно по размеру жиклёра, второе по размеру патрубка. С внутренней стороны отверстия под жиклёр сверлом большого диаметра необходимо снять фаску, чтобы получилось подобие форсунки.
    • Патрубок с форсункой подсоединяется к насосу. К тому отверстию, из которого вода подаётся под напором.
    • Вход системы отопления подсоединяется ко второму патрубку.
    • К входу насоса присоединяется выход из системы отопления.

    Цикл замкнулся. Вода будет под давлением подаваться в форсунку и за счёт образовавшегося там вихря и возникшего эффекта кавитации станет нагреваться. Регулировку температуры можно осуществить, установив за патрубком, через который вода попадает обратно в систему отопления, шаровый кран.

    Чуть прикрыв его, вы сможете повысить температуру и наоборот, открыв – понизить.

    Усовершенствуем теплогенератор

    Это может звучать странно, но и эту довольно сложную конструкцию можно усовершенствовать, ещё больше повысив её производительность, что будет несомненным плюсом для обогрева частного дома большой площади. Основывается это усовершенствование на том факте, что сам насос имеет свойство терять тепло. Значит, нужно заставить расходовать его как можно меньше.

    Добиться этого можно двумя путями. Утеплить насос при помощи любых подходящих для этой цели теплоизоляционных материалов. Или окружить его водяной рубашкой. Первый вариант понятен и доступен без каких-либо пояснений. А вот на втором следует остановиться подробнее.

    Чтобы соорудить для насоса водяную рубашку придётся поместить его в специально сконструированную герметическую ёмкость, способную выдерживать давление всей системы. Вода будет подаваться именно в эту емкость, и насос будет забирать её уже оттуда. Внешняя вода так же нагреется, что позволит насосу работать намного продуктивнее.

    Вихрегаситель

    Но, оказывается и это ещё не всё. Хорошо изучив и поняв принцип работы вихревого теплогенератора, можно оборудовать его гасителем вихрей. Подаваемый под большим давлением поток воды ударяется в противоположную стенку и завихряется. Но этих вихрей может быть несколько. Стоит только установить внутрь устройства конструкцию напоминающую своим видом хвостовик авиационной бомбы. Делается это следующим образом:

    • Из трубы чуть меньшего диаметра, чем сам генератор необходимо вырезать два кольца шириной 4-6 см.
    • Внутрь колец приварите шесть металлических пластинок, подобранных таким образом, чтобы вся конструкция получилась длинной равной четверти длины корпуса самого генератора.
    • Во время сборки устройства закрепите эту конструкцию внутри напротив сопла.

    Пределу совершенства нет и быть не может и усовершенствованием вихревого теплогенератора занимаются и в наше время. Не всем это под силу. А вот собрать устройство по схеме, приведённой выше, вполне возможно.